Cell cycle checkpoints and tumor suppressor gene functions appear to be required for the maintenance of a stable genome in proliferating cells. In this study chromosomal destabilization was monitored in relation to telomere structure, lifespan control and G2 checkpoint function. Replicative senescence was inactivated in secondary cultures of human skin fibroblasts by expressing the human papillomavirus type 16 (HPV-16) E6 oncoprotein to inactivate p53. Chromosome aberrations were enumerated during in vitro aging of isogenic control (F5neo) and HPV-16E6-expressing (F5E6) fibroblasts.
Biochemical and Biophysical Research Communications
Telomere is the repetitive DNA sequence at the end of chromosomes, which shortens progressively with cell division and limits the replicative potential of normal human somatic cells. L-carnosine, a naturally occurring dipeptide, has been reported to delay the replicative senescence, and extend the lifespan of cultured human diploid fibroblasts. In this work, we studied the effect of carnosine on the telomeric DNA of cultured human fetal lung fibroblast cells.
Fetal cardiomyocytes have been proposed as a potential source of cell-based therapy for heart failure. This study examined cellular senescence in cultured human fetal ventricular cardiomyocytes (HFCs). HFCs were isolated and identified by immunocytochemistry and RT-PCR. Cells were found to senesce after 20-25 population doublings, as determined by growth arrest, morphological changes and senescence-associated beta-galactosidase activity. Using the telomeric repeat amplification protocol assay, telomerase activity was undetectable in primary HFCs.
Previous studies have shown that glucose-6-phosphate dehydrogenase (G6PD)-deficient cells are under increased oxidative stress and undergo premature cellular senescence. The present study demonstrates that G6PD-deficient cells cultured under 3% oxygen concentration had an extended replicative lifespan, as compared with those cultured under atmospheric oxygen level. This was accompanied by a reduction in the number of senescence-associated beta-galactosidase (SA-beta-Gal) positive and morphologically senile cells at comparable population doubling levels (PDL).
BACKGROUND: Recent studies have demonstrated that activation of autophagy increases the lifespan of organisms from yeast to flies. In contrast to the lifespan extension effect in lower organisms, it has been reported that overexpression of unc-51-like kinase 3 (ULK3), the mammalian homolog of autophagy-specific gene 1 (ATG1), induces premature senescence in human fibroblasts. Therefore, we assessed whether the activation of autophagy would genuinely induce premature senescence in human cells.
Caloric restriction (CR) has been extensively documented for its profound role in effectively extending maximum lifespan in many different species. However, the accurate mechanisms, especially at the cellular level, for CR-induced aging delay are still under intense investigation. An emerging technique, recently explored in our laboratory, provides precisely controllable caloric intake in a cultured cellular system that allows real-time observation and quantitative analysis of the impact of CR on the molecular cellular level during the aging processes.
Aging can be viewed as a quasi-programmed phenomenon driven by the overactivation of the nutrient-sensing mTOR gerogene. mTOR-driven aging can be triggered or accelerated by a decline or loss of responsiveness to activation of the energy-sensing protein AMPK, a critical gerosuppressor of mTOR.
Caloric restriction (CR) has been extensively documented for its profound role in effectively extending maximum lifespan in many different species. However, the accurate mechanisms, especially at the cellular level, for CR-induced aging delay are still under intense investigation. An emerging technique, recently explored in our laboratory, provides precisely controllable caloric intake in a cultured cellular system that allows real-time observation and quantitative analysis of the impact of CR on the molecular cellular level during the aging processes.
Aging can be viewed as a quasi-programmed phenomenon driven by the overactivation of the nutrient-sensing mTOR gerogene. mTOR-driven aging can be triggered or accelerated by a decline or loss of responsiveness to activation of the energy-sensing protein AMPK, a critical gerosuppressor of mTOR.
Caloric restriction (CR) has been extensively documented for its profound role in effectively extending maximum lifespan in many different species. However, the accurate mechanisms, especially at the cellular level, for CR-induced aging delay are still under intense investigation. An emerging technique, recently explored in our laboratory, provides precisely controllable caloric intake in a cultured cellular system that allows real-time observation and quantitative analysis of the impact of CR on the molecular cellular level during the aging processes.