Cell Transformation, Viral

Publication Title: 
Experimental Cell Research

Normal human diploid cells, TIG-1, ceased to proliferate at about the 62 population doubling level (PDL). Transformed clones isolated from TIG-1 cells infected with wtSV40 and those with tsA900 SV40 cultured at 34 degrees C were subcultured up to about 80 PDL. When the culture temperature of tsA SV40-transformed cells was shifted from 34 to 39.5 degrees C at 51 PDL, the growth curve of these transformed cells changed to that of normal young cells.

Author(s): 
Ide, T.
Tsuji, Y.
Nakashima, T.
Ishibashi, S.
Publication Title: 
Experimental Cell Research

Lymphocytes have a finite and predictable proliferative life span in culture similar to that observed in fibroblasts. In general, the senescence of human fibroblasts is inevitable and irreversible, but their proliferative life span can be extended by certain DNA tumor virus oncogenes, such as the large T antigen of the SV40 virus. Here, we show that human T lymphocytes (HTL) can be stably transfected with SV40 large T and that expression of T antigen extended the life span of T cell cultures.

Author(s): 
Ryan, Q. C.
Goonewardene, I. M.
Murasko, D. M.
Publication Title: 
Experimental Cell Research

SV40 T-antigen-expressing human cells generally have an extension of lifespan until a period called "crisis" begins. On rare occasions a clone of cells emerges from the population in crisis and gives rise to an immortalized cell line. The present study compares the frequency of immortalization of cells from two different human lineages, lung fibroblasts and mammary epithelial cells.

Author(s): 
Shay, J. W.
Van Der Haegen, B. A.
Ying, Y.
Wright, W. E.
Publication Title: 
Critical Reviews in Oncogenesis

For several decades simian virus 40 (SV40) early region genes have been used as a means of generating immortalized human cell lines; however, the molecular mechanisms of this process have begun to be understood only recently. SV40-induced immortalization proceeds via two phases. In the first phase ("lifespan extension"), cells continue proliferating for a limited number of population doublings beyond the point at which normal cells undergo senescence.

Author(s): 
Bryan, T. M.
Reddel, R. R.
Publication Title: 
Oncogene

Replicative senescence is thought to be a significant barrier to human tumorigenesis, which in human fibroblasts, and many other cell types, can be overcome experimentally by combined loss of function of p53 and Rb 'pathways'. To avoid the confounding pleiotropic effects of HPVE7 frequently used in such studies, here we have employed retroviral vectors over-expressing CDK4 or CDK6 as a more representative model of naturally-occurring mutations targeting the Rb pathway.

Author(s): 
Morris, Mark
Hepburn, Peter
Wynford-Thomas, David
Publication Title: 
Proceedings of the National Academy of Sciences of the United States of America

Human fibroblasts whose lifespan in culture has been extended by expression of a viral oncogene eventually undergo a growth crisis marked by failure to proliferate. It has been proposed that telomere shortening in these cells is the property that limits their proliferation. Here we report that ectopic expression of the wild-type reverse transcriptase protein (hTERT) of human telomerase averts crisis, at the same time reducing the frequency of dicentric and abnormal chromosomes.

Author(s): 
Zhu, J.
Wang, H.
Bishop, J. M.
Blackburn, E. H.
Subscribe to RSS - Cell Transformation, Viral