Five Gram-negative, rod-shaped, non-spore-forming bacteria were isolated from galls on different plant species in Hungary: strain 39/7(T) from Prunus cerasifera Myrobalan, strain 0 from grapevine var. Ezerjó, strain 7/1 from raspberry var. Findus and in Poland, strain C3.4.1 from Colt rootstock (Prunus avium × Prunus pseudocerasus) and strain CP17.2.2 from Prunus avium. Only one of these isolates, strain 0, is able to cause crown gall on different plant species.
Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy
Tannins are polyphenolic compounds of complex structures formed by secondary metabolism in several plants. These polyphenolic compounds have different applications, such as drugs, anti-corrosion agents, flocculants, and tanning agents. This study analyses six different type of polyphenolic extracts by Fourier transform infrared spectroscopy (FTIR) combined with multivariate analysis.
Four families highly clustered for extreme longevity are described here, representing the first report of clustering for this phenotype. Families such as these may prove to be helpful in the further understanding of the genetic contribution to achieving exceptional longevity.
Clear evidence exists for heritability of human longevity, and much interest is focused on identifying genes associated with longer lives. To identify such longevity alleles, we performed the largest genome-wide linkage scan thus far reported. Linkage analyses included 2118 nonagenarian Caucasian sibling pairs that have been enrolled in 15 study centers of 11 European countries as part of the Genetics of Healthy Aging (GEHA) project.
Overall dietary patterns have been associated with health and longevity. We used principal component (PC) and cluster analyses to identify the prevailing dietary patterns of 99 744 participants, aged 60 years or older, living in nine European countries and participating in the European Prospective Investigation into Cancer and Nutrition (EPIC-Elderly cohort) and to examine their socio-demographic and lifestyle correlates.
Proceedings of the National Academy of Sciences of the United States of America
Dietary interventions are effective ways to extend or shorten lifespan. By examining midlife hepatic gene expressions in mice under different dietary conditions, which resulted in different lifespans and aging-related phenotypes, we were able to identify genes and pathways that modulate the aging process. We found that pathways transcriptionally correlated with diet-modulated lifespan and physiological changes were enriched for lifespan-modifying genes.
Schizophrenia is a complex genetic disorder, the inheritance pattern of which is likely complicated by epigenetic factors yet to be elucidated. In this study, transmission disequilibrium tests with family trios yielded significant differences between paternal and maternal transmissions of the disease-associated single-nucleotide polymorphism (SNP) rs6556547 and its haplotypes. The minor allele (T) of rs6556547 was paternally undertransmitted to male schizophrenic offsprings, and this parent-of-origin effect strongly suggested that GABRB2 is imprinted.
BACKGROUND: Recent work suggests that epigenetic differences may be associated with psychiatric disorders. Here we investigate, in a community-based sample, whether methylation profiles distinguish between individuals with and without lifetime depression. We also investigate the physiologic consequences that may be associated with these profiles.
Epidemiological studies have revealed that schizophrenia is highly heritable. However, genetic studies have not fully elucidated its etiology. Accumulating evidence suggests that epigenetic alterations may provide an additional explanation of its pathophysiology. We investigated the methylation profiles of DNA in peripheral blood cells from 18 patients with first-episode schizophrenia (FESZ) and from 15 normal controls. Schizophrenia patients were confined to those at the stage of first-episode psychosis.
Progress in Neuro-Psychopharmacology & Biological Psychiatry
Epigenetic regulation may be involved in the pathophysiology of mental disorders, such as schizophrenia and bipolar disorder, and in the pharmacological action of drugs. Characterizing the epigenetic effects of drugs is an important step to optimal treatment. We performed comprehensive and gene-specific DNA methylation analyses of quetiapine using human neuroblastoma cells. Human neuroblastoma cells were cultured with quetiapine for 8 days, and DNA methylation analysis was performed using Infinium HumanMethylation27 BeadChip. A total of 1173 genes showed altered DNA methylation.