DNA, Fungal

Publication Title: 
Biogerontology

P. anserina mutants with impairments in complex IV (COX) of the respiratory chain are characterized by an increase in lifespan. Examples are the nuclear grisea mutant with a moderate lifespan extension (60%) and the immortal extranuclear ex1 mutant. Here we report data demonstrating that in mutant ex1 the level of the alternative oxidase (PaAOX) is significantly higher than in mutant grisea. PaAOX levels appear to be reversely dependent on COX activity.

Author(s): 
Borghouts, Corina
Scheckhuber, Christian Q.
Werner, Alexandra
Osiewacz, Heinz D.
Publication Title: 
Science (New York, N.Y.)
Author(s): 
Strauss, Evelyn
Publication Title: 
Methods in Molecular Biology (Clifton, N.J.)

The diet known as caloric restriction (CR) has been known for 70 yr to extend the life span of rodents (1). CR can also extend life span in a broad range of other species as well, from unicellular organisms (2,3), to invertebrates (4) and most likely primates, as well (5). The budding yeast Saccharomyces cerevisiae is a useful model for the study of pathways that determine life span in response to dietary intake.

Author(s): 
Medvedik, Oliver
Sinclair, David A.
Publication Title: 
Mechanisms of Ageing and Development

Despite the fact that ageing necessarily displays unique aspects in a single-cell organism, yeast, in particular Saccharomyces cerevisiae, are useful as model organisms to study ageing. Here we review mitochondrial characteristics involved in yeast longevity, including biogenesis, autophagy, respiration and oxidative phosphorylation, nutrient sensing, mitochondria-nuclear signaling, redox state and mitochondrial DNA integrity.

Author(s): 
Barros, Mario H.
da Cunha, Fernanda M.
Oliveira, Graciele A.
Tahara, Erich B.
Kowaltowski, Alicia J.
Publication Title: 
Cell Cycle (Georgetown, Tex.)

Our studies revealed that LCA (lithocholic bile acid) extends yeast chronological lifespan if added to growth medium at the time of cell inoculation. We also demonstrated that longevity in chronologically aging yeast is programmed by the level of metabolic capacity and organelle organization that they developed before entering a quiescent state and, thus, that chronological aging in yeast is likely to be the final step of a developmental program progressing through at least one checkpoint prior to entry into quiescence.

Author(s): 
Burstein, Michelle T.
Kyryakov, Pavlo
Beach, Adam
Richard, Vincent R.
Koupaki, Olivia
Gomez-Perez, Alejandra
Leonov, Anna
Levy, Sean
Noohi, Forough
Titorenko, Vladimir I.
Publication Title: 
Science (New York, N.Y.)

The ribonucleoprotein enzyme telomerase synthesizes telomeric DNA by copying an internal RNA template sequence. The telomerase activities of the yeasts Saccharomyces castellii and Saccharomyces cerevisiae--with regular and irregular telomeric sequences, respectively--have now been identified and characterized. The S. cerevisiae activity required the telomerase RNA gene TLC1 but not the EST1 gene, both of which are required for normal telomere maintenance in vivo. This activity exhibited low processivity and produced no regularly repeated products.

Author(s): 
Cohn, M.
Blackburn, E. H.
Publication Title: 
Proceedings of the National Academy of Sciences of the United States of America

Chromosome ends in the lower eukaryotes terminate in variable numbers of tandem, simple DNA repeats. We tested predictions of a model in which these telomeric repeats provide a substrate for the addition of more repeats by a terminal transferase-like mechanism that, in concert with DNA polymerase and primase, effectively counterbalances the loss of DNA due to degradation or incomplete replication.

Author(s): 
Shampay, J.
Blackburn, E. H.
Publication Title: 
Science (New York, N.Y.)

The ribonucleoprotein enzyme telomerase synthesizes telomeric DNA by copying an internal RNA template sequence. The telomerase activities of the yeasts Saccharomyces castellii and Saccharomyces cerevisiae--with regular and irregular telomeric sequences, respectively--have now been identified and characterized. The S. cerevisiae activity required the telomerase RNA gene TLC1 but not the EST1 gene, both of which are required for normal telomere maintenance in vivo. This activity exhibited low processivity and produced no regularly repeated products.

Author(s): 
Cohn, M.
Blackburn, E. H.
Publication Title: 
Cell

We have constructed a linear yeast plasmid by joining fragments from the termini of Tetrahymena ribosomal DNA to a yeast vector. Structural features of the terminus region of the Tetrahymena rDNA plasmid maintained in the yeast linear plasmid include a set of specifically placed single-strand interruptions within the cluster of hexanucleotide (C4A2) repeat units. An artificially constructed hairpin terminus was unable to stabilize a linear plasmid in yeast.

Author(s): 
Szostak, J. W.
Blackburn, E. H.
Publication Title: 
Nucleic Acids Research

We report the identification and cloning of the telomeres of the filamentous fungus,Aspergillus nidulans. We have identified three classes of cloned chromosomal ends based on the telomere-associated sequences (TASs) and demonstrated that the telomeric repeat sequence is TTAGGG, identical to that found in vertebrates, including humans, and some lower eukaryotes. One category of telomere clones was found to contain internal, variant TAAGGG repeats. The A.nidulans telomeric tract length is strikingly short (4-22 repeats).

Author(s): 
Bhattacharyya, A.
Blackburn, E. H.

Pages

Subscribe to RSS - DNA, Fungal