Molecular advances of the past decade have led to the discovery of a myriad of 'aging genes' (methuselah, Indy, InR, Chico, superoxide dismutase) that extend Drosophila lifespan by up to 85%. Despite this life extension, these mutants are no longer lived than at least some recently wild-caught strains. Typically, long-lived mutants are identified in relatively short-lived genetic backgrounds, and their effects are rarely tested in genetic backgrounds other than the one in which they were isolated or derived.
It was recently reported that the plant polyphenol resveratrol, found, e.g., in grape berry skins, extended lifespan in the fruit fly Drosophila melanogaster and the nematode worm Caenorhabditis elegans. This lifespan extension was dependent on an NAD(+)-dependent histone deacetylase, Sir2 in Drosophila and SIR-2.1 in C. elegans. The extension of lifespan appeared to occur through a mechanism related to dietary restriction (DR), the reduction of available nutrients without causing malnutrition, an intervention that extends lifespan in diverse organisms from yeast to mammals.
Calorie restriction (CR) is a non-genetic manipulation that reliably results in extended lifespan of several species ranging from yeast to dogs. The lifespan extension effect of CR has been strongly associated with an increased level and activation of the silent information regulator 2 (Sir2) histone deacetylase and its mammalian ortholog Sirt1. This association led to the search for potential Sirt1-activating, life-extending molecules. This review briefly outlines the experimental findings on resveratrol and other dietary activators of Sirt1.
A botanical extract (Regrapex-R) prepared from whole grape (Vitis vinifera) and Polygonum cuspidatum, which contains polyphenols, including flavans, anthocyanins, emodin, and resveratrol, exhibited dose-dependent scavenging effects on reactive oxygen species (ROS). The extract inhibited increases of ROS and protein carbonyl in isolated rat liver mitochondria following exposure to 2,2'-azobis (2-amidino propane) dihydrocholoride (AAPH), a potent lipid oxidant generator.
Understanding the causes of aging is a complex problem due to the multiple factors that influence aging, which include genetics, environment, metabolism and reproduction, among others. These multiple factors create logistical difficulties in the evaluation of anti-aging agents. There is a need for good model systems to evaluate potential anti-aging compounds.
Aging is a complex process accompanied by a decreased capacity of cells to cope with random molecular damages. Damaged proteins can form aggregates and have cytotoxic properties, a feature of many age-associated diseases. Small Hsps are chaperones involved in the refolding and/or disposal of protein aggregates. In Drosophila melanogaster, the mitochondrial DmHsp22 is preferentially upregulated during aging. Its over-expression results in an extension of lifespan (>30%) and an increased resistance to stress.
This article proposes that behavioural advancement during mammalian evolution had been in part mediated through extension of total developmental time. Such time extensions would have resulted in increased numbers of neuronal precursor cells, hence larger brains and a disproportionate increase in the neocortex. Larger neocortical areas enabled new connections to be formed during development and hence expansion of existing behavioural circuits.
Hormesis, the beneficial effect of a mild stress, has been proposed as a means to prolong the period of healthy ageing as it can increase the average lifespan of a cohort. However, if we want to use hormesis therapeutically it is important that the treatment is beneficial on the individual level and not just on average at the population level. Long lived lines have been shown not to benefit from a, in other lines, hormesis inducing heat treatment in Drosophila melanogaster, D. buzzatii and mice.
Journal of Genetics and Genomics = Yi Chuan Xue Bao
CoQ is an essential electron carrier in the mitochondrial respiratory chain of both eukaryotes and prokaryotes. It consists of a benzoquinone head group and a hydrophobic polyisoprenoid tail. The genes (COQ1-9) involved in CoQ biosynthesis have been characterized in yeast. In this study, we generated and molecularly characterized a mutant allele of a novel Drosophila gene, sbo, which encodes a protein that is predicted to catalyze the prenylation of p-hydroxybenzoate with the isoprenoid chain during the process of CoQ synthesis.
Aging and age-related diseases can be viewed as the result of the lifelong accumulation of stress insults. The identification of mutant strains and genes that are responsive to stress and can alter longevity profiles provides new therapeutic targets for age-related diseases. Here we reported that a Drosophila strain with reduced expression of ribose-5-phosphate isomerase (rpi), EP2456, exhibits increased resistance to oxidative stress and enhanced lifespan. In addition, the strain also displays higher levels of NADPH.