Allergic rhinitis, also known as hay fever, rose fever or summer catarrh, is a major challenge to health professionals. A large number of the world's population, including approximately 40 million Americans, suffers from allergic rhinitis. A novel, botanical formulation (Aller-7) has been developed for the treatment of allergic rhinitis using a combination of extracts from seven medicinal plants, including Phyllanthus emblica, Terminalia chebula, T. bellerica, Albizia lebbeck, Piper nigrum, Zingiber officinale and P. longum, which have a proven history of efficacy and health benefits.
Allergic rhinitis, a frequently occurring immunological disorder affecting men, women and children worldwide, is a state of hypersensitivity that occurs when the body overreacts to a substance such as pollen, mold, mites or dust. Allergic rhinitis exerts inflammatory response and irritation of the nasal mucosal membranes leading to sneezing; stuffy/runny nose; nasal congestion; and itchy, watery and swollen eyes.
Journal of Environmental Pathology, Toxicology and Oncology: Official Organ of the International Society for Environmental Toxicology and Cancer
We report the results of our genotoxic evaluation of extracts from three medicinal plants Acacia nilotica, Juglans regia, and Terminalia chebula and the herbal drug Triphala employing the VITOTOX and comet tests.These tests detect DNA damage in prokaryotic and eukaryotic test systems, respectively. In the VITOTOX test, none of the extracts were identified as genotoxic.
Terminalia chebula Retz. has been used in India for a long time to treat many diseases, and its extract was reported to have antidiabetic activity in vivo. In this study, T. chebula methanolic extract (TCE) containing 2.7 % chebulic acid was evaluated for its preventive effects against the formation of advanced glycation end products (AGEs) and endothelial cell dysfunction.
In the present study, we firstly compared rat intestinal ?-glucosidase inhibitory activity by different ethanol-aqueous extractions from the dried fruits of Terminalia chebula Retz. The enzymatic assay showed that the 80% ethanol extract was more potent against maltase activity than both 50% and 100% ethanol extracts. By HPLC analysis, it was determined that the 80% ethanol extract had a higher content of chebulagic acid than each of 50% or 100% ethanol extract.
Inhibition of Acetylcholinesterase (AChE) is still considered as the main therapeutic strategy against Alzheimer's disease (AD). Many plant derived phytochemicals have shown AChE inhibitory activity in addition to the currently approved drugs for AD. In the present study, methanolic extracts of 20 plants used in Indian Ayurvedic system of medicine for improving cognitive function were screened for acetylcholinesterase inhibitory activity by Ellman's microplate colorimetric method.
Dermatophytes are the most common causative agents of cutaneous mycosis and remain a major public health problem in spite of the availability of an increasing number of antifungal drugs. It was, therefore considered necessary to pursue the screening of different extracts (compounds) of selected traditional medicinal plants reportedly having antidermatophyte potential. The aim of this study was to isolate and identify specific compound from the most active extract (free flavonoid) of stem of Terminalia chebula of the selected plants to treat dermatophytosis induced on experimental mice.
CONTEXT: Bacterial ureases play an important role in pathogenesis of urinary infections. Selection of plants was done on the basis of their uses by the local people for the treatment of various bacterial and urinary infections. OBJECTIVE: Our investigation screens and evaluates 15 Indian medicinal plants for their possible urease inhibitory activity as well as their ability to inhibit bacteria causing urinary infections.
A number of lines of evidence, including nonhuman primate and human studies, suggest that regulatory pathways similar to those invoked by caloric restriction (CR) may be involved in determining human longevity. Thus, pharmaceuticals capable of mimicking the molecular mechanisms of life- and health-span extension by CR (CR mimetics) may have application to human health. CR acts rapidly, even in late adulthood, to begin to extend life- and health-span in mice. We have linked these effects with rapid changes in the levels of specific gene transcripts in the liver and the heart.
Health problems are rising worldwide, be it as a consequence of lifestyle and longevity in increasingly affluent societies or due to a sharp rise in bacterial antibiotic resistance. The pharmaceutical industry is caught between high rates of attrition and the rather slow pace of a historically large regulatory system for pharmacological safety. Meanwhile, the past decade has seen a tremendous evolution of the biological toolbox, most notably of cellular assays, stem-cell differentiation and organ-mimicking systems. These systems were readily adapted for lead-compound identification.