Gene Expression Profiling

Publication Title: 
Journal of Biomedical Science

BACKGROUND: Asthma has become an important public health issue and approximately 300 million people have suffered from the disease worldwide. Nowadays, the use of acupuncture in asthma is increasing. This study intended to systematically analyze and compare the gene expression profiles between the asthmatic and acupuncture-treated asthmatic rat lung, and tried to gain insight into the molecular mechanism underlying the early airway response (EAR) phase of asthma treated by acupuncture.

Author(s): 
Yin, Lei-Miao
Jiang, Gong-Hao
Wang, Yu
Wang, Yan
Liu, Yan-Yan
Jin, Wei-Rong
Xu, Yu-Dong
Zhang, Qing-hua
Yang, Yong-Qing
Publication Title: 
Journal of Biomedical Science

BACKGROUND: Asthma has become an important public health issue and approximately 300 million people have suffered from the disease worldwide. Nowadays, the use of acupuncture in asthma is increasing. This study intended to systematically analyze and compare the gene expression profiles between the asthmatic and acupuncture-treated asthmatic rat lung, and tried to gain insight into the molecular mechanism underlying the early airway response (EAR) phase of asthma treated by acupuncture.

Author(s): 
Yin, Lei-Miao
Jiang, Gong-Hao
Wang, Yu
Wang, Yan
Liu, Yan-Yan
Jin, Wei-Rong
Xu, Yu-Dong
Zhang, Qing-hua
Yang, Yong-Qing
Publication Title: 
Microscopy Research and Technique

Caloric restriction (CR) may retard aging processes and extend lifespan in organisms by altering energy-metabolic pathways. In CR rodents, glucose influx into tissues is not reduced, as compared with control animals fed ad libitum (AL), although plasma concentrations of glucose and insulin are lower. Gene expression profiles in rodents have suggested that CR promotes gluconeogenesis and fatty acid biosynthesis in skeletal muscle. In the liver, CR promotes gluconeogenesis but decreases fatty acid synthesis and glycolysis.

Author(s): 
Yamaza, Haruyoshi
Chiba, Takuya
Higami, Yoshikazu
Shimokawa, Isao
Publication Title: 
Gerontology

BACKGROUND: We review studies showing that CR acts rapidly, even in late adulthood, to extend health- and lifespan in mice. These rapid physiological effects are closely linked to patterns of gene expression in liver and heart. Non-human primate and human studies suggest that the signal transduction pathways responsible for the lifespan and health effects of caloric restriction (CR) may also be involved in human longevity. Thus, pharmaceuticals capable of mimicking the effects of CR (and other methods of lifespan extension) may have application to human health.

Author(s): 
Spindler, Stephen R.
Mote, Patricia L.
Publication Title: 
Cell Cycle (Georgetown, Tex.)

Genetic studies in model organisms such as yeast, worms, flies, and mice leading to lifespan extension suggest that longevity is subject to regulation. In addition, various system-wide interventions in old animals can reverse features of aging. To better understand these processes, much effort has been put into the study of aging on a molecular level. In particular, genome-wide microarray analysis of differently aged individual organisms or tissues has been used to track the global expression changes that occur during normal aging.

Author(s): 
Adler, Adam S.
Kawahara, Tiara L. A.
Segal, Eran
Chang, Howard Y.
Publication Title: 
PLoS genetics

Mutant dwarf and calorie-restricted mice benefit from healthy aging and unusually long lifespan. In contrast, mouse models for DNA repair-deficient progeroid syndromes age and die prematurely. To identify mechanisms that regulate mammalian longevity, we quantified the parallels between the genome-wide liver expression profiles of mice with those two extremes of lifespan. Contrary to expectation, we find significant, genome-wide expression associations between the progeroid and long-lived mice.

Author(s): 
Schumacher, Bjˆrn
van der Pluijm, Ingrid
Moorhouse, Michael J.
Kosteas, Theodore
Robinson, Andria Rasile
Suh, Yousin
Breit, Timo M.
van Steeg, Harry
Niedernhofer, Laura J.
van Ijcken, Wilfred
Bartke, Andrzej
Spindler, Stephen R.
Hoeijmakers, Jan H. J.
van der Horst, Gijsbertus T. J.
Garinis, George A.
Publication Title: 
BMC bioinformatics

BACKGROUND: Differential coexpression is a change in coexpression between genes that may reflect 'rewiring' of transcriptional networks. It has previously been hypothesized that such changes might be occurring over time in the lifespan of an organism. While both coexpression and differential expression of genes have been previously studied in life stage change or aging, differential coexpression has not. Generalizing differential coexpression analysis to many time points presents a methodological challenge.

Author(s): 
Gillis, Jesse
Pavlidis, Paul
Publication Title: 
Molecular Immunology

Neutrophils are major cells participants in innate host responses. They are short-lived leukocytes, although microbial products activate intracellular signaling cascades that prolong their survival by inhibiting constitutive apoptosis. To gain insight into the phylogeny of this important cell type, we examined the ability of toll-like receptor agonists to extend the lifespan of gilthead seabream (Sparus aurata L.) acidophilic granulocytes, which are the functional equivalent of mammalian neutrophils.

Author(s): 
Sepulcre, MarÌa P.
LÛpez-MuÒoz, Azucena
Angosto, Diego
GarcÌa-Alcazar, Alicia
Meseguer, JosÈ
Mulero, Victoriano
Publication Title: 
International Journal of Oncology

Telomeres are nucleoprotein structures at the ends of chromosomes that are composed of a repetitive G rich sequence and telomeric binding proteins. Telomeres prevent the degradation of chromosomal ends and protect against inappropriate recombination. Telomere attrition involves a tumor suppressor pathway that limits the replication of premalignant cells. The loss of telomeric DNA with each round of replication leads to growth arrest accompanied by senescence or apoptosis. Many tumor cells activate the telomerase gene to bypass senescence.

Author(s): 
Bojovic, Bojana
Crowe, David L.
Publication Title: 
Aging Cell

We investigated the hypothesis that gene expression profiles in cultured cell lines from adults, aged 57-97 years, contain information about the biological age and potential longevity of the donors. We studied 104 unrelated grandparents from 31 Utah CEU (Centre d'Etude du Polymorphisme Humain - Utah) families, for whom lymphoblastoid cell lines were established in the 1980s.

Author(s): 
Kerber, Richard A.
O'Brien, Elizabeth
Cawthon, Richard M.

Pages

Subscribe to RSS - Gene Expression Profiling