Granulocyte-Macrophage Progenitor Cells

Publication Title: 
Radiation Research

FancD2 plays a central role in the human Fanconi anemia DNA damage response (DDR) pathway. Fancd2(-/-) mice exhibit many features of human Fanconi anemia including cellular DNA repair defects. Whether the DNA repair defect in Fancd2(-/-) mice results in radiologic changes in all cell lineages is unknown. We measured stress of hematopoiesis in long-term marrow cultures and radiosensitivity in clonogenic survival curves, as well as comet tail intensity, total antioxidant stores and radiation-induced gene expression in hematopoietic progenitor compared to bone marrow stromal cell lines.

Berhane, Hebist
Epperly, Michael W.
Goff, Julie
Kalash, Ronny
Cao, Shaonan
Franicola, Darcy
Zhang, Xichen
Shields, Donna
Houghton, Frank
Wang, Hong
Wipf, Peter
Parmar, Kalindi
Greenberger, Joel S.
Publication Title: 
Cancer immunology, immunotherapy: CII

Bone marrow myelotoxicity is a major limitation of chemotherapy. While granulocyte colony stimulating factor (G-CSF) treatment is effective, alternative approaches to support hematopoietic recovery are sought. We previously found that a beta-glucan extract from maitake mushroom Grifola frondosa (MBG) enhanced colony forming unit-granulocyte monocyte (CFU-GM) activity of mouse bone marrow and human hematopoietic progenitor cells (HPC), stimulated G-CSF production and spared HPC from doxorubicin toxicity in vitro.

Lin, Hong
de Stanchina, Elisa
Zhou, Xi Kathy
Hong, Feng
Seidman, Andrew
Fornier, Monica
Xiao, Wei-Lie
Kennelly, Edward J.
Wesa, Kathleen
Cassileth, Barrie R.
Cunningham-Rundles, Susanna
Subscribe to RSS - Granulocyte-Macrophage Progenitor Cells