Inhibitor of Differentiation Protein 1

Publication Title: 
Aging Cell

Fetal cardiomyocytes have been proposed as a potential source of cell-based therapy for heart failure. This study examined cellular senescence in cultured human fetal ventricular cardiomyocytes (HFCs). HFCs were isolated and identified by immunocytochemistry and RT-PCR. Cells were found to senesce after 20-25 population doublings, as determined by growth arrest, morphological changes and senescence-associated beta-galactosidase activity. Using the telomeric repeat amplification protocol assay, telomerase activity was undetectable in primary HFCs.

Author(s): 
Ball, Andrew J.
Levine, Fred
Publication Title: 
Toxicology and Applied Pharmacology

The ID (inhibitor of differentiation or DNA binding) helix-loop-helix proteins are important mediators of cellular differentiation and proliferation in a variety of cell types through regulation of gene expression. Overexpression of the ID proteins in normal human keratinocytes results in extension of culture lifespan, indicating that these proteins are important for epidermal differentiation. Our hypothesis is that the ID proteins are targets of the retinoic acid signaling pathway in keratinocytes.

Author(s): 
Villano, C. M.
White, L. A.
Publication Title: 
Molecular Carcinogenesis

The Id family of helix-loop-helix transcription factors is upregulated in a variety of human malignancies and has been implicated in promoting tumorigenesis through effects on cell growth, differentiation, and tumor angiogenesis. While expression of Id proteins has been associated with tumorigenesis, the precise mechanistic relationship between Id expression and carcinogenesis has not been clearly delineated. We have previously shown that Id1 delays cellular senescence in primary mammalian cells through inhibition of the cell cycle regulatory protein and familial melanoma gene, p16/INK4a.

Author(s): 
Cummings, Staci D.
Ryu, Byungwoo
Samuels, Michael A.
Yu, Xiaobing
Meeker, Alan K.
Healey, Megan A.
Alani, Rhoda M.
Subscribe to RSS - Inhibitor of Differentiation Protein 1