Proprotein Convertases

Publication Title: 
Biochemistry and Cell Biology = Biochimie Et Biologie Cellulaire

My desire as a young endocrinologist to improve my clinical skills through a better knowledge of hormone chemistry led me to serendipitous discoveries and unexpected horizons. The first discovery, published in 1967, revealed that peptide hormones are derived from endoproteolytic cleavages of larger precursor polypeptides. It was the foundation of the prohormone theory.

Author(s): 
ChrÈtien, Michel
Publication Title: 
The Journal of Biological Chemistry

Elevated LDL-cholesterol is a risk factor for the development of cardiovascular disease. Thus, proper control of LDL-cholesterol homeostasis is critical for organismal health. Genetic analysis has identified PCSK9 (proprotein convertase subtilisin/kexin type 9) as a crucial gene in the regulation of LDL-cholesterol via control of LDL receptor degradation. Although biochemical characteristics and clinical implications of PCSK9 have been extensively investigated, epigenetic regulation of this gene is largely unknown.

Author(s): 
Tao, Rongya
Xiong, Xiwen
DePinho, Ronald A.
Deng, Chu-Xia
Dong, X. Charlie
Publication Title: 
The Journal of Biological Chemistry

PCSK9 is a natural inhibitor of LDL receptor (LDLR) that binds the extracellular domain of LDLR and triggers its intracellular degradation. PCSK9 and LDLR are coordinately regulated at the transcriptional level by sterols through their promoter-imbedded sterol response elements (SRE) and co-induced by statins. Identification of regulatory networks modulating PCSK9 transcription is important for developing selective repressors of PCSK9 to improve statin efficacy by prolonging the up-regulation of LDLR.

Author(s): 
Li, Hai
Dong, Bin
Park, Sahng Wook
Lee, Hyun-Sook
Chen, Wei
Liu, Jingwen
Publication Title: 
Journal of Lipid Research

We investigated the role of proprotein convertase subtilisin/kexin type 9 (PCSK9) in the resistance of dyslipidemic hamsters to statin-induced LDL-cholesterol (LDL-C) reduction and the molecular mechanism by which statins modulated PCSK9 gene expression in vivo. We utilized the fructose diet-induced dyslipidemic hamsters as an in vivo model and rosuvastatin to examine its effects on liver PCSK9 and LDL receptor (LDLR) expression and serum lipid levels. We showed that rosuvastatin induced PCSK9 mRNA to a greater extent than LDLR mRNA in the hamster liver.

Author(s): 
Dong, Bin
Wu, Minhao
Li, Hai
Kraemer, Fredric B.
Adeli, Khosrow
Seidah, Nabil G.
Park, Sahng Wook
Liu, Jingwen
Publication Title: 
Journal of Lipid Research

PCSK9 degrades LDL receptor (LDLR) in liver and thereby influences the circulating level of LDL cholesterol. Hence, mechanisms inhibiting PCSK9 expression have potential for cholesterol-lowering intervention. Previously, we demonstrated that oncostatin M (OM) activates LDLR gene transcription, resulting in an increased LDL uptake in HepG2 cells and a reduction of plasma LDL in hypercholesterolemic hamsters. Here we identify the suppression of PCSK9 expression by OM as one new mechanism that increases LDLR protein in HepG2 cells.

Author(s): 
Cao, Aiqin
Wu, Minhao
Li, Hai
Liu, Jingwen
Publication Title: 
The Biochemical Journal

PCSK9 (proprotein convertase subtilisin/kexin type 9) plays an important role in control of plasma LDL (low-density lipoprotein) cholesterol metabolism by modulating the degradation of hepatic LDL receptor. Previous studies demonstrated that PCSK9 is a target gene of the SREBP2 [SRE (sterol-regulatory element)-binding protein 2] that activates PCSK9 gene transcription through an SRE motif of the promoter. In addition to SREBP2, HNF1α (hepatic nuclear factor 1α) positively regulates PCSK9 gene transcription in hepatic cells through a binding site located 28 bp upstream from SRE.

Author(s): 
Li, Hai
Liu, Jingwen
Subscribe to RSS - Proprotein Convertases