Odontogenic keratocysts (OKC) present an aggressive course with a marked tendency to recurrence. The epithelium of OKC is thought to have an intrinsic growth potential and has been shown to present a higher rate of proliferation as compared to other types of cyst. bcl-2 has a role in the extension of cell survival. The objective of the present study was to evaluate the bcl-2 protein expression in different odontogenic cysts. A total of 19 dentigerous cysts (DC), 20 radicular cysts (RC) and 14 OKC were used in the present study. DC and RC showed an almost complete negativity for bcl-2.
Insertions or deletions (indels) of amino acids residues have been recognized as an important source of genetic and structural divergence between paralogous Bcl-2 family members. However, these signature sequences have not so far been extensively investigated amongst orthologous Bcl-2 family proteins. Bcl2l10 is an antiapoptotic member of the Bcl-2 family that has evolved rapidly throughout the vertebrate lineage and which shows conserved abundant expression in eggs and oocytes.
ETHNOPHARMACOLOGICAL RELEVANCE: Eucommia ulmoides Oliv. Bark. (EUE), has commonly been used to fortify the muscles and lungs, lower blood pressure, prevent miscarriage, improve the tone of liver and kidneys, and promote longevity the traditional tonic medicines of Korea, China, and Japan. AIM OF THE STUDY: In this study, we investigated that the neuroprotective activities and possible mechanisms of EUE aqueous extract in hydrogen peroxide (H(2)O(2))-induced neuronal cell death in human SH-SY5Y neuroblastoma cells.
Overexpression of Bcl-2 contributes to resistance of cancer cells to human cytotoxic lymphocytes (CL) by blocking granzyme B (GraB)-induced mitochondrial outer membrane permeabilization (MOMP). Drugs that neutralise Bcl-2 (e.g., ABT-737) may therefore be effective adjuvants for immunotherapeutic strategies that use CL to kill cancer cells. Consistent with this we found that ABT-737 effectively restored MOMP in Bcl-2 overexpressing cells treated with GraB or natural killer cells.
Tumors use a wide array of immunosuppressive strategies, such as reducing the longevity and survival of dendritic cells (DCs), to diminish immune responses and limit the effect of immunotherapy. In this study, we found that tumors upregulate the expression of multiple microRNAs (miRNAs), such as miR-16-1, miR-22, miR-155, and miR-503. These tumor-associated miRNAs influenced the survival and longevity of DCs by affecting the expression of multiple molecules that are associated with apoptotic signaling pathways.
OBJECTIVE: Autism spectrum disorder (ASD) is associated with preterm birth (PTB), although the reason underlying this relationship is still unclear. Our objective was to examine DNA methylation patterns of 4 ASD candidate genes in human fetal membranes from spontaneous PTB and uncomplicated term birth. STUDY DESIGN: A literature search for genes that have been implicated in ASD yielded 14 candidate genes (OXTR, SHANK3, BCL2, RORA, EN2, RELN, MECP2, AUTS2, NLGN3, NRXN1, SLC6A4, UBE3A, GABA, AFF2) that were epigenetically modified in relation to ASD.
Artemisinin (AR) is a widely used antimalarial drug. Recently, additional uses for AR as an anticancer drug were discovered. Using TUNEL, immunohistochemistry (IHS) markers and flow cytometry techniques, we evaluated the effect of AR and 5-FU on HPV 16 immortalized and transformed human gingival epithelial (IHGK) cells. The results of TUNEL showed that AR-treated IHGK cells consisted of 82% positive cells, while 5-FU-treated cells consisted of 18% positive cells.
AIM: To investigate the anticancer activity of dihydroartemisinin (DHA), a derivative of antimalaria drug artemisinin in a panel of human ovarian cancer cell lines. METHODS: Cell growth was determined by the MTT viability assay. Apoptosis and cell cycle progression were evaluated by a DNA fragmentation gel electro-phoresis, flow cytometry assay, and TUNEL assay; protein and mRNA expression were analyzed by Western blotting and RT-PCR assay.
The sesquiterpene lactone dihydroartemisinin (DHA), a semisynthetic derivative of the herbal antimalaria drug artemisinin, is cytotoxic to human tumor cells. Treatment of Jurkat T-lymphoma cells with DHA induced a breakdown of the mitochondrial transmembrane potential, release of cytochrome c, activation of caspases, and DNA fragmentation indicative of apoptosis induction.
Recent research suggests that altered redox control of melanoma cell survival, proliferation, and invasiveness represents a chemical vulnerability that can be targeted by pharmacological modulation of cellular oxidative stress. The endoperoxide artemisinin and semisynthetic artemisinin-derivatives including dihydroartemisinin (DHA) constitute a major class of antimalarials that kill plasmodium parasites through induction of iron-dependent oxidative stress.