BACKGROUND: Serotonin 3A receptor (5-HT3A R) is associated at the genetic and epigenetic levels with a variety of psychiatric disorders and interacts with early-life stress such as childhood maltreatment. We studied the impact of childhood maltreatment on the methylation status of the 5-HT3A R and its association with clinical severity outcomes in relation with a functional genetic polymorphism.
Ethyl 2-(4-bromophenyl)-1-(2,4-dichlorophenyl)-1H-4-imidazolecarboxylate (TG41) enhanced the binding both of gamma-aminobutyric acid (GABA) and of flunitrazepam to rat cerebral cortical membranes. Electrophysiological recordings from Xenopus oocytes expressing various recombinant GABA(A) receptor subtypes revealed that TG41 enhanced the function of all receptor subunit combinations tested. The potency of TG41 at receptors containing alpha1, beta2, and gamma2L subunits was greater than that of alphaxalone, etomidate, propofol, or pentobarbital.
In the present study, we investigated the role of 5-hydroxytryptamine type 3 (5-HT(3)) receptors in hypnosis and analgesia induced by emulsified sevoflurane. A mouse model of hypnosis and analgesia was established by an intraperitoneal or subcutaneous injection of emulsified sevoflurane.We intracerebroventricularly (i.c.v.) or intrathecally (i.t.) administered YM-31636, a 5-HT(3) receptor agonist, to mice and observed sleep time during hypnosis.
Medical Principles and Practice: International Journal of the Kuwait University, Health Science Centre
OBJECTIVE: The present study was undertaken to evaluate the antinociceptive effects of an ayurvedic polyherbal formulation in rats and mice employing the tail immersion test and acetic acid-induced writhing test, respectively.
Bacopa monniera is a well-known medhya-rasayana (memory enhancing and rejuvenating) plant in Indian traditional medical system of Ayurveda. The effect of a standardized extract of Bacopa monniera (BESEB CDRI-08) on serotonergic receptors and its influence on other neurotransmitters during hippocampal-dependent learning was evaluated in the present study.
This report of the proceedings of a symposium presented at the 2005 annual meeting of the Research Society on Alcoholism highlights the actions of ethanol on purinergic (P2XRs) and 5-hydroxytryptamine3 (5-HT3Rs) receptors. Both P2XRs and 5-HT3Rs, are modulated by pharmacologically relevant concentrations of ethanol, with inhibition or stimulation of P2XR subtypes and stimulation of 5-HT3Rs, respectively. With regard to ethanol-modulatory actions, these 2 distinctly different receptor classes have been studied to a much lesser extent than other LGICs. The organizers and chairs were Daryl L.
BACKGROUND: The importance of bi-directional brain-gut interactions in gastrointestinal illness is increasingly being recognized, most prominently in the area of functional gastrointestinal disorders. Numerous current and emerging therapies aimed at normalizing brain-gut interactions are a focus of interest, particularly for irritable bowel syndrome and functional dyspepsia. METHODS: A literature search was completed for preclinical and clinical studies related to central modulation of gastrointestinal functions and published in English between 1980 and 2006.
BACKGROUND & AIMS: 5-Hydroxytryptamine (5-HT)3 receptor (5-HT3R) antagonists are effective in treating patients with irritable bowel syndrome (IBS) and have anxiolytic effects. Their therapeutic effects are related, in part, to reducing amygdala engagement during expected visceral pain. A single nucleotide polymorphism in HTR3A, c.-42C>T;(C178T; rs1062613), is associated with altered reactivity of the amygdala during emotional face processing in healthy subjects (controls).