Replicative senescence is thought to be a significant barrier to human tumorigenesis, which in human fibroblasts, and many other cell types, can be overcome experimentally by combined loss of function of p53 and Rb 'pathways'. To avoid the confounding pleiotropic effects of HPVE7 frequently used in such studies, here we have employed retroviral vectors over-expressing CDK4 or CDK6 as a more representative model of naturally-occurring mutations targeting the Rb pathway.
Current models envision replicative senescence to be under dual control by the p53 and retinoblastoma (RB) tumour-suppressor pathways. The role of the p16(INK4a)-RB pathway is controversial, and the function of RB in human cells has not been tested directly. We used targeted homologous recombination to knock out one copy of RB in presenescent human fibroblasts. During entry into senescence, RB+/- cells underwent spontaneous loss of heterozygosity and the resultant RB-/- clones bypassed senescence. The extended lifespan phase was eventually terminated by a crisis-like state.
Telomere shortening in normal human cells causes replicative senescence, a p53-dependent growth arrest state, which is thought to represent an innate defence against tumour progression. However, although it has been postulated that critical telomere loss generates a 'DNA damage' signal, the signalling pathway(s) that alerts cells to short dysfunctional telomeres remains only partially defined.
Proteasome-dependent degradation has been extensively investigated and has been shown to play a vital role in the maintenance of cellular homeostasis. Proteasome activity and expression are reduced during aging and replicative senescence. Its activation has been shown to confer lifespan extension in human diploid fibroblasts (HDFs), whereas partial proteasome inhibition triggers an irreversible premature senescent state in young HDFs.
Proceedings of the National Academy of Sciences of the United States of America
Blind mole rats Spalax (BMR) are small subterranean rodents common in the Middle East. BMR is distinguished by its adaptations to life underground, remarkable longevity (with a maximum documented lifespan of 21 y), and resistance to cancer. Spontaneous tumors have never been observed in spalacids. To understand the mechanisms responsible for this resistance, we examined the growth of BMR fibroblasts in vitro of the species Spalax judaei and Spalax golani.
Chronic treatment of mice with an enterically released formulation of rapamycin (eRapa) extends median and maximum life span, partly by attenuating cancer. The mechanistic basis of this response is not known. To gain a better understanding of thesein vivo effects, we used a defined preclinical model of neuroendocrine cancer, Rb1+/- mice. Previous results showed that diet restriction (DR) had minimal or no effect on the lifespan of Rb1+/- mice, suggesting that the beneficial response to DR is dependent on pRb1.
Using a modified single telomere length analysis protocol (STELA) to clone and examine the sequence composition of individual human XpYp telomeres, we discovered a distinct class of extremely short telomeres in human cancer cells with active telomerase. We name them "t-stumps," to distinguish them from the well-regulated longer bulk telomeres. T-stumps contained arrangements of telomeric repeat variants and a minimal run of seven canonical telomeric TTAGGG repeats, but all could bind at least one TRF1 or TRF2 in vitro.
Artemisinin, a naturally occurring component of Artemisia annua, or sweet wormwood, is a potent anti-malaria compound that has recently been shown to have anti-proliferative effects on a number of human cancer cell types, although little is know about the molecular mechanisms of this response. We have observed that artemisinin treatment triggers a stringent G1 cell cycle arrest of LNCaP (lymph node carcinoma of the prostate) human prostate cancer cells that is accompanied by a rapid down-regulation of CDK2 and CDK4 protein and transcript levels.
The present day lifestyle heavily depends on industrial chemicals in the form of agriculture, cosmetics, textiles and medical products. Since the toxicity of the industrial chemicals has been a concern to human health, the need for alternative non-toxic natural products or adjuvants that serve as antidotes are in high demand. We have investigated the effects of Ayurvedic herb Ashwagandha (Withania somnifera) leaf extract on methoxyacetic acid (MAA) induced toxicity.
The present day lifestyle heavily depends on industrial chemicals in the form of agriculture, cosmetics, textiles and medical products. Since the toxicity of the industrial chemicals has been a concern to human health, the need for alternative non-toxic natural products or adjuvants that serve as antidotes are in high demand. We have investigated the effects of Ayurvedic herb Ashwagandha (Withania somnifera) leaf extract on methoxyacetic acid (MAA) induced toxicity.