RNA, Fungal

Publication Title: 
Genes & Development

The ribonucleoprotein (RNP) enzyme telomerase from Saccharomyces cerevisiae adds telomeric DNA to chromosomal ends in short increments both in vivo and in vitro. Whether or not telomerase functions as a multimer has not been addressed previously. Here we show, first, that following polymerization, the telomerase RNP remains stably bound to its telomeric oligonucleotide reaction product. We then exploit this finding and a previously reported mutant telomerase RNA to demonstrate that, unexpectedly, the S.

Author(s): 
Prescott, J.
Blackburn, E. H.
Publication Title: 
Science (New York, N.Y.)

The ribonucleoprotein enzyme telomerase synthesizes telomeric DNA by copying an internal RNA template sequence. The telomerase activities of the yeasts Saccharomyces castellii and Saccharomyces cerevisiae--with regular and irregular telomeric sequences, respectively--have now been identified and characterized. The S. cerevisiae activity required the telomerase RNA gene TLC1 but not the EST1 gene, both of which are required for normal telomere maintenance in vivo. This activity exhibited low processivity and produced no regularly repeated products.

Author(s): 
Cohn, M.
Blackburn, E. H.
Publication Title: 
Science (New York, N.Y.)

The ribonucleoprotein enzyme telomerase synthesizes telomeric DNA by copying an internal RNA template sequence. The telomerase activities of the yeasts Saccharomyces castellii and Saccharomyces cerevisiae--with regular and irregular telomeric sequences, respectively--have now been identified and characterized. The S. cerevisiae activity required the telomerase RNA gene TLC1 but not the EST1 gene, both of which are required for normal telomere maintenance in vivo. This activity exhibited low processivity and produced no regularly repeated products.

Author(s): 
Cohn, M.
Blackburn, E. H.
Publication Title: 
Genes & Development

The reverse transcriptase telomerase is a ribonucleoprotein complex that adds telomeric repeats to chromosome ends, using a sequence within its endogenous RNA component as a template. Although templating domains of telomerase RNA have been studied in detail, little is known about the roles of the remaining residues, particularly in yeast. We examined the functions of nontemplate telomerase residues in the telomerase RNA of budding yeast Kluyveromyces lactis.

Author(s): 
Roy, J.
Fulton, T. B.
Blackburn, E. H.
Publication Title: 
Nature

The ribonucleoprotein enzyme telomerase adds telomeric DNA onto chromosome ends and is normally regulated so that telomeric DNA lengths are kept within defined bounds. In the telomerase RNA gene from the yeast Kluyveromyces lactis, specific mutations that alter telomeric DNA sequences result in telomeres elongating to up to 100 times their normal length and impair cell growth. Some mutations cause immediate elongation whereas others behave like genetic time bombs, causing elongation only after a latent period of hundreds of generations.

Author(s): 
McEachern, M. J.
Blackburn, E. H.
Publication Title: 
Genes & Development

It is well established that the template for telomeric DNA synthesis is provided by the RNA subunit of telomerase; however, the additional functions provided by most of the rest of the RNA (>1000 nucleotides in budding yeast) are largely unknown. By alignment of telomerase RNAs of Saccharomyces cerevisiae and six Kluyveromyces species followed by mutagenesis of the S. cerevisiae RNA, we found a conserved region that is essential for telomere maintenance.

Author(s): 
Seto, Anita G.
Livengood, April J.
Tzfati, Yehuda
Blackburn, Elizabeth H.
Cech, Thomas R.
Publication Title: 
Molecular and Cellular Biology

Telomeres in the budding yeast Kluyveromyces lactis consist of perfectly repeated 25-bp units, unlike the imprecise repeats at Saccharomyces cerevisiae telomeres and the short (6- to 8-bp) telomeric repeats found in many other eukaryotes. Telomeric DNA is synthesized by the ribonucleoprotein telomerase, which uses a portion of its RNA moiety as a template. K. lactis telomerase RNA, encoded by the TER1 gene, is approximately 1.3 kb long and contains a 30-nucleotide templating domain, the largest ever examined.

Author(s): 
Fulton, T. B.
Blackburn, E. H.
Publication Title: 
Science (New York, N.Y.)

The telomerase ribonucleoprotein has a phylogenetically divergent RNA subunit, which contains a short template for telomeric DNA synthesis. To understand how telomerase RNA participates in mechanistic aspects of telomere synthesis, we studied a conserved secondary structure adjacent to the template. Disruption of this structure caused DNA synthesis to proceed beyond the normal template boundary, resulting in altered telomere sequences, telomere shortening, and cellular growth defects. Compensatory mutations restored normal telomerase function.

Author(s): 
Tzfati, Y.
Fulton, T. B.
Roy, J.
Blackburn, E. H.
Publication Title: 
Proceedings of the National Academy of Sciences of the United States of America

Telomerase synthesizes telomeric DNA by copying a short template sequence within its telomerase RNA component. We delineated nucleotides and base-pairings within a previously mapped central domain of the Saccharomyces cerevisiae telomerase RNA (TLC1) that are important for telomerase function and for binding to the telomerase catalytic protein Est2p. Phylogenetic comparison of telomerase RNA sequences from several budding yeasts revealed a core structure common to Saccharomyces and Kluyveromyces yeast species.

Author(s): 
Lin, Jue
Ly, Hinh
Hussain, Arif
Abraham, Mira
Pearl, Sivan
Tzfati, Yehuda
Parslow, Tristram G.
Blackburn, Elizabeth H.
Publication Title: 
Genes & Development

Deletion of the telomerase RNA gene (TER1) in the yeast Kluyveromyces lactis results in gradual loss of telomeric repeats and progressively declining cell growth capability (growth senescence). We show that this initial growth senescence is characterized by abnormally large, defectively dividing cells and is delayed when cells initially contain elongated telomeres. However, cells that survive the initial catastrophic senescence emerge relatively frequently, and their subsequent growth without telomerase is surprisingly efficient.

Author(s): 
McEachern, M. J.
Blackburn, E. H.

Pages

Subscribe to RSS - RNA, Fungal