Stilbenes

Publication Title: 
Nature

Calorie restriction extends lifespan in organisms ranging from yeast to mammals. In yeast, the SIR2 gene mediates the life-extending effects of calorie restriction. Here we show that the mammalian SIR2 orthologue, Sirt1 (sirtuin 1), activates a critical component of calorie restriction in mammals; that is, fat mobilization in white adipocytes. Upon food withdrawal Sirt1 protein binds to and represses genes controlled by the fat regulator PPAR-gamma (peroxisome proliferator-activated receptor-gamma), including genes mediating fat storage.

Author(s): 
Picard, FrÈdÈric
Kurtev, Martin
Chung, Namjin
Topark-Ngarm, Acharawan
Senawong, Thanaset
Machado De Oliveira, Rita
Leid, Mark
McBurney, Michael W.
Guarente, Leonard
Publication Title: 
Aging Cell

This past decade has seen the identification of numerous conserved genes that extend lifespan in diverse species, yet the number of compounds that extend lifespan is relatively small. A class of compounds called STACs, which were identified as activators of Sir2/SIRT1 NAD+-dependent deacetylases, extend the lifespans of multiple species in a Sir2-dependent manner and can delay the onset of age-related diseases such as cancer, diabetes and neurodegeneration in model organisms.

Author(s): 
Yang, Hongying
Baur, Joseph A.
Chen, Allen
Miller, Christine
Adams, Jeffrey K.
Kisielewski, Anne
Howitz, Konrad T.
Zipkin, Robert E.
Sinclair, David A.
Publication Title: 
Mechanisms of Ageing and Development

It was recently reported that the plant polyphenol resveratrol, found, e.g., in grape berry skins, extended lifespan in the fruit fly Drosophila melanogaster and the nematode worm Caenorhabditis elegans. This lifespan extension was dependent on an NAD(+)-dependent histone deacetylase, Sir2 in Drosophila and SIR-2.1 in C. elegans. The extension of lifespan appeared to occur through a mechanism related to dietary restriction (DR), the reduction of available nutrients without causing malnutrition, an intervention that extends lifespan in diverse organisms from yeast to mammals.

Author(s): 
Bass, Timothy M.
Weinkove, David
Houthoofd, Koen
Gems, David
Partridge, Linda
Publication Title: 
Current Medicinal Chemistry

Trans-resveratrol or (E)-resveratrol [3,4',5 trihydroxy-trans-stilbene, t-RESV or (E)-RESV] is a natural component of Vitis vinifera L. (Vitaceae), abundant in the skin of grapes (but not in the flesh) and in the leaf epidermis and present in wines (especially red wines). In in vitro, ex vivo and in vivo experiments, t-RESV exhibits a number of biological activities, including anti inflammatory, antioxidant, platelet antiaggregatory and anticarcinogenic properties, and modulation of lipoprotein metabolism.

Author(s): 
Orallo, Francisco
Publication Title: 
Age (Dordrecht, Netherlands)

Dietary restriction (DR) increases lifespan in a range of evolutionarily distinct species. The polyphenol resveratrol may be a dietary mimetic of some effects of DR. The pivotal role of the mammalian histone deacetylase (HDAC) Sirt1, and its homologue in other organisms, in mediating the effects of both DR and resveratrol on lifespan/ageing suggests it may be the common conduit through which these dietary interventions influence ageing.

Author(s): 
Wakeling, Luisa A.
Ions, Laura J.
Ford, Dianne
Publication Title: 
Aging

Although autophagy has widely been conceived as a self-destructive mechanism that causes cell death, accumulating evidence suggests that autophagy usually mediates cytoprotection, thereby avoiding the apoptotic or necrotic demise of stressed cells. Recent evidence produced by our groups demonstrates that autophagy is also involved in pharmacological manipulations that increase longevity. Exogenous supply of the polyamine spermidine can prolong the lifespan of (while inducing autophagy in) yeast, nematodes and flies.

Author(s): 
Morselli, Eugenia
Galluzzi, Lorenzo
Kepp, Oliver
Criollo, Alfredo
Maiuri, Maria Chiara
Tavernarakis, Nektarios
Madeo, Frank
Kroemer, Guido
Publication Title: 
Mechanisms of Ageing and Development

Dietary restriction (DR) delays or prevents age-related diseases and extends lifespan in species ranging from yeast to primates. Although the applicability of this regimen to humans remains uncertain, a proportional response would add more healthy years to the average life than even a cure for cancer or heart disease. Because it is unlikely that many would be willing or able to maintain a DR lifestyle, there has been intense interest in mimicking its beneficial effects on health, and potentially longevity, with drugs.

Author(s): 
Baur, Joseph A.
Publication Title: 
Critical Reviews in Food Science and Nutrition

Longevity can be explained by the free radical theory of aging, and caloric restriction (CR) studies showed that CR-induced lifespan extension is associated with the prevention of a decrease in oxidative stress. Non-enzymatic lipophilic antioxidants may play a pivotal role in our aging process, and are reflected in our dietary lifestyle and dietary supplementation. Their significance lies in their general good absorption and slow excretion within our body.

Author(s): 
Chong-Han, Kua
Publication Title: 
Life Sciences

AIMS: Resveratrol, a silent information regulator 1 (SIRT1) activator, has been reported to act as an antioxidant contained in red wine and prevent the development of cardiovascular diseases. Histone deacetylase such as SIRT1 is involved in the regulation of lifespan extension. In this study, the effect of resveratrol on matrix metalloproteinases (MMPs) that play an important role in metastasis was examined in human fibrosarcoma cell line, HT1080. MAIN METHODS: The effect of resveratrol on MMPs' activity was evaluated using gelatin zymography.

Author(s): 
Lee, Soo-Jin
Kim, Moon-Moo
Publication Title: 
Annals of the New York Academy of Sciences

Age is the most important risk factor for diseases affecting the Western world, and slowing age-related degeneration would greatly improve the quality of human life. In rodents, caloric restriction (CR) extends lifespan by up to 50%. However, attempts to mimic the effects of CR pharmacologically have been limited by our poor understanding of the mechanisms involved. SIRT1 is proposed to mediate key aspects of CR, and small molecule activators may therefore act as CR mimetics.

Author(s): 
Agarwal, Beamon
Baur, Joseph A.

Pages

Subscribe to RSS - Stilbenes