The aim of the present study was to determine Toll-like receptor (TLR)-2 and TLR-4 membrane expression on the major peritoneal leukocyte populations throughout the aging process, including subjects that had achieved exceptional longevity. ICR (CD1) female mice of different ages: adult (44 +/- 4 weeks), old (69 +/- 4), very old (92 +/- 4) and extreme long-lived (125 +/- 4), were used.
In mice, monocytes that exhibit a pro-inflammatory profile enter muscle tissue after muscle injury and are crucial for clearance of necrotic tissue and stimulation of muscle progenitor cell proliferation and differentiation. The aim of this study was to test if pro-inflammatory capacity of classically activated (M1) monocytes relates to muscle mass and strength in humans. This study included 191 male and 195 female subjects (mean age 64.2 years (SD 6.4) and 61.9 ± 6.4, respectively) of the Leiden Longevity Study.
Lavender essential oil (LEO) is one the most favorite and widely used essential oils in aromatherapy. Many studies have demonstrated its functions in calming, assisting sleep, reducing pain and muscular spasms and its antiseptic function. To date, however, the mechanism of LEO on inflammation response is not well understood. In this study, we examined the effect of LEO on 5 ?g/ml lipopolysaccharide (LPS) induced inflammation reaction in human monocyte THP-1 cells. We found treatment of 0.1% LEO significantly increased cell viability and inhibited the IL-1?
OBJECTIVE: Immune and inflammatory signaling pathways, initiated by the innate response, are involved in myocardial ischemia/reperfusion (I/R) injury. Toll-like receptor (TLR) mediated MyD88-dependent NFkappaB pathways play a role in the induction of innate immunity. We have reported that glucan phosphate (GP) improved survival in experimental sepsis, which correlated with decreased tissue NFkappaB activation. In the present study, we report that GP rapidly induced cardioprotection against I/R injury in vivo.
OBJECTIVE: We have previously demonstrated that nuclear factor kappa B (NFkappaB) activation is needed for the development of cardiac hypertrophy in vivo. NFkappaB is a downstream transcription factor in the Toll-like receptor (TLR)-mediated signaling pathway; therefore, we investigated a role of TLR4 in cardiac hypertrophy in vivo. METHODS: TLR4-deficient mice (C.C3H-Tlr4(lps-d), n = 6), wild-type (WT) genetic background mice (BALB/c, n = 6), TLR4-deleted strain (C57BL/10ScCr, n = 8), and WT controls (C57BL/10ScSn, n = 8) were subjected to aortic banding for 2 weeks.
C-reactive protein (CRP) is the prototypic marker of inflammation and a strong predictor of cardiovascular events in humans. There are questions regarding the validity of the biological effects reported for CRP, in spite of adherence to rigorous control measures minimizing endotoxin [lipopolysaccharide (LPS)] contamination in these in vitro studies. In this study, we addressed the key question of endotoxin contamination in CRP preparations using Toll-like receptor 4 (TLR4) knockdown endothelial cells.
The Journal of Clinical Endocrinology and Metabolism
CONTEXT: Type 1 diabetes (T1DM) is associated with increased cardiovascular mortality. It is a pro-inflammatory state as evidenced by increased circulating biomarkers and monocyte activity. The toll-like receptors (TLRs) are pattern recognition receptors, expressed abundantly on monocytes. TLR2 and TLR4 are important in atherosclerosis. However, there is a paucity of data examining TLR2 and TLR4 expression in T1DM and examining its contribution to the proinflammatory state.
CD40 is a costimulatory molecule linking innate and adaptive immune responses to bacterial stimuli, as well as a critical regulator of functions of other costimulatory molecules. The mechanisms regulating lipopolysaccharide (LPS)-induced CD40 expression have not been adequately characterized in human monocytic cells. In this study we used a human monocytic cell line, THP-1, to investigate the possible mechanisms of CD40 expression following LPS exposure. Exposure to LPS resulted in a dose- and time-dependent increase in CD40 expression.
OBJECTIVE: Hyperglycemia-induced inflammation is central in diabetes complications, and monocytes are important in orchestrating these effects. Toll-like receptors (TLRs) play a key role in innate immune responses and inflammation. However, there is a paucity of data examining the expression and activity of TLRs in hyperglycemic conditions. Thus, in the present study, we examined TLR2 and TLR4 mRNA and protein expression and mechanism of their induction in monocytic cells under high-glucose conditions.
Toll-like receptors (TLRs) are key innate immune sensors of endogenous damage signals and play an important role in inflammatory diseases like diabetes and atherosclerosis. Pioglitazone (PIO), a peroxisome proliferator-activated receptor (PPAR)-gamma agonist, has been reported to be an antiinflammatory agent. Thus, in the present study, we examined the antiinflammatory effects of PIO on TLR2 and TLR4 expression in human monocytes exposed to Pam3CSK4 (Pam; TLR2 ligand) and purified lipopolysaccharide (LPS; TLR4 ligand) using flow cytometry and real-time RT-PCR.