Yeasts

Publication Title: 
Cell Death and Differentiation

Ageing in divergent animal phyla is influenced by several evolutionarily conserved signalling pathways, mitochondrial activity and various environmental factors such as nutrient availability and temperature. Although ageing is a multifactorial process with many mechanisms contributing to the decline, the intracellular accumulation of damaged proteins and mitochondria is a feature common to all aged cells.

Author(s): 
Vellai, T.
Publication Title: 
Experimental Gerontology

The absence of mtDNA in rho0 yeast cells affects both respiration and mitochondrial-nuclear communication (e.g., retrograde regulation, intergenomic signaling, or pleiotropic drug resistance). Previously, it has been reported that some rho0 strains have increased replicative lifespans, attributable to the lack of respiration and retrograde regulation.

Author(s): 
Woo, Dong Kyun
Poyton, Robert O.
Publication Title: 
Aging Cell

Dietary restriction (DR) is a robust nongenetic, nonpharmacological intervention that is known to increase active and healthy lifespan in a variety of species. Despite a variety of differences in the protocols and the way DR is carried out in different species, conserved relationships are emerging among multiple species. 2009 saw the field of DR mature with important mechanistic insights from multiple species. A report of lifespan extension in rapamycin-treated mice suggested that the TOR pathway, a conserved mediator of DR in invertebrates, may also be critical to DR effects in mammals.

Author(s): 
Katewa, Subhash D.
Kapahi, Pankaj
Publication Title: 
Oxidative Medicine and Cellular Longevity

When growing on solid surfaces, yeast, like other microorganisms, develops organized multicellular populations (colonies and biofilms) that are composed of differentiated cells with specialized functions. Life within these populations is a prevalent form of microbial existence in natural settings that provides the cells with capabilities to effectively defend against environmental attacks as well as efficiently adapt and survive long periods of starvation and other stresses.

Author(s): 
V·chov·, Libuöe
C·p, Michal
Palkov·, Zdena
Publication Title: 
The Journal of Experimental Medicine

Relatively few cancers arise in mature, differentiated cells. The propensity of mature B cells to transform has been linked to their longevity and proliferative potential, and stimulation of the B cell receptor (BCR) by cognate antigen may promote the transformation process. A study in this issue (Hoogeboom et al.) lends support to this notion, showing that cancer cells from a subset of patients with chronic lymphocytic leukemia (CLL) express a BCR specific for a sugar expressed by commensal yeast species.

Author(s): 
Greaves, Mel
Publication Title: 
Molecules and Cells

Sirtuins (SIRTs), a family of nicotinamide adenine dinucleotide (NAD)-dependent deacetylases, are emerging as key molecules that regulate aging and age-related diseases including cancers, metabolic disorders, and neurodegenerative diseases. Seven isoforms of SIRT (SIRT1-7) have been identified in mammals. SIRT1 and 6, mainly localized in the nucleus, regulate transcription of genes and DNA repair. SIRT3 in the mitochondria regulates mitochondrial bioenergetics.

Author(s): 
Park, Seongjoon
Mori, Ryoichi
Shimokawa, Isao
Publication Title: 
Mechanisms of Ageing and Development

The phenomenon that caloric restriction increases life span in a variety of species from yeast to mice has been the focus of much interest. Recent observations suggest that a protein important for heterochromatin formation, Sir2, is central for caloric restriction-induced longevity in lower organisms.

Author(s): 
Hasty, P.
Publication Title: 
Science (New York, N.Y.)

Restriction of the number of calories consumed extends longevity in many organisms. In rodents, caloric restriction decreases the levels of plasma glucose and insulin-like growth factor I (IGF-1) and postpones or attenuates cancer, immunosenescence, and inflammation without irreversible side effects. In organisms ranging from yeast to mice, mutations in glucose or IGF-I-like signaling pathways extend life-span but also cause glycogen or fat accumulation and dwarfism.

Author(s): 
Longo, Valter D.
Finch, Caleb E.
Publication Title: 
Nature
Author(s): 
Corder, Roger
Crozier, Alan
Kroon, Paul A.
Publication Title: 
Nature
Author(s): 
Nemoto, Shino
Finkel, Toren

Pages

Subscribe to RSS - Yeasts