Cell Cycle

Publication Title: 
Experimental Cell Research

Cellular senescence is a state of irreversible cell cycle arrest in which normal cells at the end of their lifespan fail to enter into DNA synthesis upon serum or growth factor stimulation. We examined whether proteins required for G1/S cell cycle progression were irreversibly down-regulated in senescent human fibroblasts. Both the 44- and 42-kDa forms of the MAP-kinase protein were expressed at similar levels in young and senescent cells.

Author(s): 
Afshari, C. A.
Vojta, P. J.
Annab, L. A.
Futreal, P. A.
Willard, T. B.
Barrett, J. C.
Publication Title: 
Oncogene

Normal human breast epithelial cells were transfected with expression vectors containing the p53 gene mutated at either codon 143, 175, 248 or 273, or by infection with a recombinant retroviral vector containing the p53 gene mutated at codons 143, 175, 248, or 273. The breast epithelial cells were monitored for extension of in vitro lifespan and immortalization. Expression of some, but not all, p53 mutants resulted in an extension of in vitro lifespan.

Author(s): 
Gollahon, L. S.
Shay, J. W.
Publication Title: 
Oncogene

Replicative senescence is thought to be a significant barrier to human tumorigenesis, which in human fibroblasts, and many other cell types, can be overcome experimentally by combined loss of function of p53 and Rb 'pathways'. To avoid the confounding pleiotropic effects of HPVE7 frequently used in such studies, here we have employed retroviral vectors over-expressing CDK4 or CDK6 as a more representative model of naturally-occurring mutations targeting the Rb pathway.

Author(s): 
Morris, Mark
Hepburn, Peter
Wynford-Thomas, David
Publication Title: 
The EMBO journal

Telomere shortening in normal human cells causes replicative senescence, a p53-dependent growth arrest state, which is thought to represent an innate defence against tumour progression. However, although it has been postulated that critical telomere loss generates a 'DNA damage' signal, the signalling pathway(s) that alerts cells to short dysfunctional telomeres remains only partially defined.

Author(s): 
Gire, VÈronique
Roux, Pierre
Wynford-Thomas, David
Brondello, Jean-Marc
Dulic, Vjekoslav
Publication Title: 
Biochemical Pharmacology

Studying the biological functions of the aryl hydrocarbon receptor (AhR) other than its function in xenobiotic drug metabolism may answer the questions as to why AhR orthologues have long been conserved phylogenically widely in the animal kingdom, and why homologues have diverged from nonvertebrate species such as nematodes and drosophila to all the vertebrate species.

Author(s): 
Hirabayashi, Yoko
Inoue, Tohru
Publication Title: 
Experimental Gerontology

We describe a new chronological lifespan (CLS) assay for the yeast Schizosaccharomyces pombe. Yeast CLS assays monitor the loss of cell viability in a culture over time, and this new assay shows a continuous decline in viability without detectable regrowth until all cells in the culture are dead. Thus, the survival curve is not altered by the generation of mutants that can grow during the experiments, and one can monitor the entire lifespan of a strain until the number of viable cells has decreased over 10(6)-fold.

Author(s): 
Chen, Bo-Ruei
Runge, Kurt W.
Publication Title: 
Aging

Caloric restriction, that is limiting food intake, is recognized in mammals as the best characterized and most reproducible strategy for extending lifespan, retarding physiological aging and delaying the onset of age-associated diseases. The aim of this mini review is to argue that p53 is the connection in the abilities of both the Sirt-1 pathway and the TOR pathway to impact on longevity of cells and organisms.

Author(s): 
Tucci, Paola
Publication Title: 
Aging

Caloric restriction, that is limiting food intake, is recognized in mammals as the best characterized and most reproducible strategy for extending lifespan, retarding physiological aging and delaying the onset of age-associated diseases. The aim of this mini review is to argue that p53 is the connection in the abilities of both the Sirt-1 pathway and the TOR pathway to impact on longevity of cells and organisms.

Author(s): 
Tucci, Paola
Publication Title: 
Molecular Cancer Therapeutics

Sirtuins (SIRT1-7) are a highly conserved family of NAD(+)-dependent enzymes that control the activity of histone and nonhistone regulatory proteins. SIRT1 is purposed to promote longevity and to suppress the initiation of some cancers. Nevertheless, SIRT1 is reported to function as a tumor suppressor as well as an oncogenic protein. Our data show that compared with normal liver or surrounding tumor tissue, SIRT1 is strongly overexpressed in human hepatocellular carcinoma (HCC).

Author(s): 
Portmann, Simone
Fahrner, RenÈ
Lechleiter, Antje
Keogh, Adrian
Overney, Sarah
Laemmle, Alexander
Mikami, Kei
Montani, Matteo
Tschan, Mario P.
Candinas, Daniel
Stroka, Deborah
Publication Title: 
Nucleic Acids Research

The eukaryotic DNA replication initiation factor Mcm10 is essential for both replisome assembly and function. Human Mcm10 has two DNA-binding domains, the conserved internal domain (ID) and the C-terminal domain (CTD), which is specific to metazoans. SIRT1 is a nicotinamide adenine dinucleotide (NAD)-dependent deacetylase that belongs to the sirtuin family. It is conserved from yeast to human and participates in cellular controls of metabolism, longevity, gene expression and genomic stability.

Author(s): 
Fatoba, Samuel T.
Tognetti, Silvia
Berto, Melissa
Leo, Elisabetta
Mulvey, Claire M.
Godovac-Zimmermann, Jasminka
Pommier, Yves
Okorokov, Andrei L.

Pages

Subscribe to RSS - Cell Cycle