Oxidative Stress

Publication Title: 
Nature Genetics

Reactive oxygen (RO) has been identified as an important effector in ageing and lifespan determination. The specific cell types, however, in which oxidative damage acts to limit lifespan of the whole organism have not been explicitly identified. The association between mutations in the gene encoding the oxygen radical metabolizing enzyme CuZn superoxide dismutase (SOD1) and loss of motorneurons in the brain and spinal cord that occurs in the life-shortening paralytic disease, Familial Amyotrophic Lateral Sclerosis (FALS; ref.

Author(s): 
Parkes, T. L.
Elia, A. J.
Dickinson, D.
Hilliker, A. J.
Phillips, J. P.
Boulianne, G. L.
Publication Title: 
Free Radical Biology & Medicine

Mutations in human CuZn superoxide dismutase (SOD) have been associated with familial amyotrophic lateral sclerosis (FALS). Although leading to many experimental advances, this finding has not yet led to a clear understanding of the biochemical mechanism by which mutations in SOD promote the degeneration of motorneurons that causes this incurable paralytic disease.

Author(s): 
Elia, A. J.
Parkes, T. L.
Kirby, K.
St George-Hyslop, P.
Boulianne, G. L.
Phillips, J. P.
Hilliker, A. J.
Publication Title: 
Mutation Research

During the course of normal respiration, reactive oxygen species are produced which are particularly detrimental to mitochondrial function. This is shown by recent studies with a mouse that lacks the mitochondrial form of superoxide dismutase (Sod2). Tissues that are heavily dependent on mitochondrial function such as the brain and heart are most severely affected in the Sod2 mutant mouse.

Author(s): 
Melov, S.
Coskun, P. E.
Wallace, D. C.
Publication Title: 
Mechanisms of Ageing and Development

Carnosine (beta-alanyl-L-histidine), an abundant naturally-occurring dipeptide has been shown to exhibit anti-ageing properties towards cultured cells, possibly due in part to its antioxidant/free radical scavenging abilities. In this paper the results of an investigation on the effects of carnosine, at the physiological concentration of 20 mM, on oxidative DNA damage levels and in vitro lifespan in peripheral blood derived human CD4+ T cell clones are reported.

Author(s): 
Hyland, P.
Duggan, O.
Hipkiss, A.
Barnett, C.
Barnett, Y.
Publication Title: 
Biogerontology

Biogerontology is the study of the aging of biological systems. This review addresses the relationship between chemistry and biology during aging, proposing that chemistry is responsible for the aging of biological systems. In the continuing struggle between chemistry and biology, chemistry is always the short-term, tactical winner--death of the individual is inevitable. However, barring the extinction of species, biology is the long-term, strategic victor--life survives, and the struggle continues.

Author(s): 
Baynes, J. W.
Publication Title: 
Current Opinion in Clinical Nutrition and Metabolic Care

PURPOSE OF REVIEW: The focus of this review is on current research involving long-term calorie restriction and the resulting changes observed in possible biomarkers of aging. Special emphasis will be given to the basic and clinical science studies which are currently investigating the effects of controlled, high-quality energy-restricted diets on both biomarkers of longevity and on the development of chronic diseases related to age and obesity in humans.

Author(s): 
Smith, Julie V.
Heilbronn, Leonie K.
Ravussin, Eric
Publication Title: 
Journal of Neurochemistry

The search for effective treatments that prevent oxidative stress associated with premature ageing and neurodegenerative diseases is an important area of neurochemical research. As age- and disease-related oxidative stress is frequently associated with mitochondrial dysfunction, amphiphilic antioxidant agents of high stability and selectivity that target these organelles can provide on-site protection.

Author(s): 
Poeggeler, Burkhard
Durand, GrÈgory
Polidori, Ange
Pappolla, Miguel A.
Vega-Naredo, Ignacio
Coto-Montes, Ana
Bˆker, Jutta
Hardeland, R¸diger
Pucci, Bernard
Publication Title: 
The Journal of Biological Chemistry

Extending the productive lifespan of human cells could have major implications for diseases of aging, such as atherosclerosis. We identified a relationship between aging of human vascular smooth muscle cells (SMCs) and nicotinamide phosphoribosyltransferase (Nampt/PBEF/Visfatin), the rate-limiting enzyme for NAD+ salvage from nicotinamide. Replicative senescence of SMCs was preceded by a marked decline in the expression and activity of Nampt.

Author(s): 
van der Veer, Eric
Ho, Cynthia
O'Neil, Caroline
Barbosa, Nicole
Scott, Robert
Cregan, Sean P.
Pickering, J. Geoffrey
Publication Title: 
Free Radical Research

Previous studies have shown that glucose-6-phosphate dehydrogenase (G6PD)-deficient cells are under increased oxidative stress and undergo premature cellular senescence. The present study demonstrates that G6PD-deficient cells cultured under 3% oxygen concentration had an extended replicative lifespan, as compared with those cultured under atmospheric oxygen level. This was accompanied by a reduction in the number of senescence-associated beta-galactosidase (SA-beta-Gal) positive and morphologically senile cells at comparable population doubling levels (PDL).

Author(s): 
Ho, Hung-Yao
Cheng, Mei-Ling
Cheng, Pei-Fen
Chiu, Daniel Tsun-Yee
Publication Title: 
Aging Cell

Brain aging is associated with a progressive imbalance between antioxidant defenses and intracellular concentrations of reactive oxygen species (ROS) as exemplified by increases in products of lipid peroxidation, protein oxidation, and DNA oxidation. Oxidative conditions cause not only structural damage but also changes in the set points of redox-sensitive signaling processes including the insulin receptor signaling pathway. In the absence of insulin, the otherwise low insulin receptor signaling is strongly enhanced by oxidative conditions.

Author(s): 
Drˆge, Wulf
Schipper, Hyman M.

Pages

Subscribe to RSS - Oxidative Stress