The effect of various nucleotides and adenosine on the hepatic biotransformation of hexobarbital sodium (HB) and p-chloro-N-methylaniline (PCMA) was determined in male rats. Intraperitoneal administration of dibutyryl cyclic adenosine 3',5'-monophosphate (DBcAMP), alone and in combination with theophylline, and the cyclic adenosine 3',5'-monophosphate (cAMP)-theophylline combination prolonged HB sleeping time by more than 70%.
The ability of adenosine to modify the CNS effects of acute and chronic ethanol was studied by using theophylline, an adenosine antagonist, and dipyridamole, a blocker of adenosine reuptake. We also studied the binding characteristics of adenosine using crude membranes of whole brain. Theophylline pretreatment prior to acute ethanol administration markedly reduced the duration of ethanol-induced sleep and similarly decreased the intensity and duration of motor incoordination.
We investigated the effect of adenosine on hypnosis induced by thiopentone, propofol and midazolam in mice. The onset and duration of hypnosis were determined by the loss of righting reflex. Adenosine and 2-chloroadenosine caused a significant shortening of onset of sleep-time and prolongation of duration of sleep-time in all groups (p < 0.05). Dipyridamole administration before combined intravenous anaesthetic-adenosine or intravenous anaesthetic-2-chloroadenosine administration produced similar effects to adenosine (p < 0.05).
To characterize the sedative and hypnotic profile of the novel adenosine derivative ((3S,4R,5R)-3,4-dihydroxy-5-(6-((4-hydroxy-3-methoxybenzyl)amino)-9H-purin-9-yl)tetrahydrofuran-2-yl) methyl diaconate (WS0701), we performed a variety of behavioural tests and investigated the influence of WS0701 on various sleep stages. In mice, WS0701 significantly increased the number of entries and time spent in open arms in the elevated plus maze test, indicating an anxiolytic effect.
BHMT (betaine-homocysteine methyltransferase) remethylates homocysteine to form methionine. SAM (S-adenosylmethionine) inhibits BHMT activity, but whether SAM modulates BHMT gene expression is unknown. Transcriptional regulation of the human BHMT is also unknown. The present study examined regulation of the human BHMT gene by SAM and its metabolite, MTA (5'-methylthioadenosine). To facilitate these studies, we cloned the 2.7 kb 5'-flanking region of the human BHMT gene (GenBank accession number AY325901).
The intensity and duration of host responses are determined by protective mechanisms that control tissue injury by dampening down inflammation. Adenosine generation and consequent effects, mediated via A2A adenosine receptors (A2AR) on effector cells, play a critical role in the pathophysiological modulation of these responses in vivo. Adenosine is both released by hypoxic cells/tissues and is also generated from extracellular nucleotides by ecto-enzymes e.g. CD39 (ENTPD1) and CD73 that are expressed by the vasculature and immune cells, in particular by T regulatory cell.
BACKGROUND AND PURPOSE: The increased levels of extracellular adenosine in inflamed tissues down-regulate activated immune cells via the A(2A) adenosine receptor. This A(2A) adenosine receptor-mediated immunosuppression is a disqualifying obstacle in cancer immunotherapy as it protects cancerous tissues from adoptively transferred anti-tumour T cells. The aim of this study was to test whether the negative selection of T cells will produce T cells that are resistant to inhibition by extracellular adenosine.
Hypoxia-driven increase of extracellular adenosine in local tissue microenvironments of inflamed and cancerous tissues plays a critical role in the regulation of tissue destruction by activated immune cells. Accumulated data suggest that injection or consumption of A2A adenosine receptor (A2AR) antagonists may represent a drug treatment that diminishes adenosine-mediated immunosuppression. Since this, in turn, enhances the immune response, inhibition of adenosine-A2AR signaling may be a promising approach to enhance anti-tumor or anti-pathogen immune response.
Immunosuppressive signaling via the A2A adenosine receptor (A2AR) provokes a mechanism that protects inflamed tissues from excessive damage by immune cells. This mechanism is desirable not only for preventing uncontrolled tissue destruction by overactive immune responses, but also for protecting tumor tissues from antitumor immune responses. In aforementioned circumstances, T cell priming may occur in an environment containing high concentrations of extracellular adenosine.
Strategies are needed to reverse the immune cell hyporesponsiveness and prevent bacterial overgrowth associated with high mortality rates in septic patients. Adenosine signaling may be mediating immunosuppressive signals within the inflammatory microenvironment that are safeguarding bacteria by rendering immune cells hyporesponsive. We examined A2A adenosine receptor (A2AR)-mediated immune responses in a chronic model of cecal ligation and puncture (CLP)-induced sepsis using both wild-type (WT) and A2AR knockout (KO) mice.