Caloric restriction (CR) is the only experimental nongenetic paradigm known to increase lifespan. It has broad applicability and extends the life of most species through a retardation of aging. There is considerable interest in the use of CR in humans, and animal studies can potentially tell us about the impacts. In this article we highlight some of the things that animal studies can tell us about CR in humans. Rodent studies indicate that the benefits of CR on lifespan extension are related to the extent of restriction.
SIRT1 is the mammalian homologue of yeast silent information regulator (Sir)-2, a member of the sirtuin family of protein deacetylases which have gained much attention as mediators of lifespan extension in several model organisms. Induction of SIRT1 expression also attenuates neuronal degeneration and death in animal models of Alzheimer's disease and Huntington's disease. SIRT1 induction, either by sirtuin activators such as resveratrol, or metabolic conditioning associated with caloric restriction (CR), could be neuroprotective in several ways.
STUDY DESIGN: Nonviral transfection of nucleus pulposus cells with a telomerase expression construct to assess the effects on cellular lifespan, function, karyotypic stability, and transformation properties. OBJECTIVES: To investigate whether telomerase gene therapy can extend the cellular lifespan while retaining functionality of nucleus pulposus cells in a safe manner. SUMMARY OF BACKGROUND DATA: Degeneration of the intervertebral disc is an age-related condition in which cells responsible for the maintenance and health of the disc deteriorate with age.
FOXO (Forkhead box O) transcription factors constitute an evolutionally conserved subgroup within the large Forkhead family of transcription regulators. FOXO factors are important regulators of the cell cycle, apoptosis, DNA repair, metabolism, oxidative stress resistance and longevity. Genetic studies of Caenorhabditis elegans demonstrated that FOXO factors are major targets of the insulin-like signalling implicated during the regulation of glucose metabolism and lifespan extension.
BACKGROUND: We review studies showing that CR acts rapidly, even in late adulthood, to extend health- and lifespan in mice. These rapid physiological effects are closely linked to patterns of gene expression in liver and heart. Non-human primate and human studies suggest that the signal transduction pathways responsible for the lifespan and health effects of caloric restriction (CR) may also be involved in human longevity. Thus, pharmaceuticals capable of mimicking the effects of CR (and other methods of lifespan extension) may have application to human health.
Ticks are obligate hematophagous ectoparasites with a life cycle characterized by a period of starvation; many ticks spend more than 95% of their life off the host. Autophagy, which is the process of bulk cytoplasmic degradation in eukaryotic cells, is induced by starvation and is essential for extension of the lifespan. Therefore, we hypothesized that autophagy also occurs in ticks; however, there has been no report on autophagy-related (ATG) genes in ticks.
In 2000, it was suggested to me that "Autophagy will be the wave of the future; it will become the new apoptosis." Few people would have agreed at the time, but this statement turned out to be prophetic, and this process of 'self-eating' rapidly exploded as a research field, as scientists discovered connections to cancer, neurodegeneration and even lifespan extension. Amazingly, the molecular breakthroughs in autophagy have taken place during only the past decade.
It was recently reported that the plant polyphenol resveratrol, found, e.g., in grape berry skins, extended lifespan in the fruit fly Drosophila melanogaster and the nematode worm Caenorhabditis elegans. This lifespan extension was dependent on an NAD(+)-dependent histone deacetylase, Sir2 in Drosophila and SIR-2.1 in C. elegans. The extension of lifespan appeared to occur through a mechanism related to dietary restriction (DR), the reduction of available nutrients without causing malnutrition, an intervention that extends lifespan in diverse organisms from yeast to mammals.
The mechanisms that determine the lifespan of an organism are still largely a mystery. One goal of ageing research is to find drugs that would increase lifespan and vitality when given to an adult animal. To this end, we tested 88,000 chemicals for the ability to extend the lifespan of adult Caenorhabditis elegans nematodes. Here we report that a drug used as an antidepressant in humans increases C. elegans lifespan. In humans, this drug blocks neural signalling by the neurotransmitter serotonin. In C.
Amyotrophic lateral sclerosis (ALS) is a progressive disease which is caused by degeneration of motor neurons in the central nervous system. The incidence of ALS is higher in men than women, but the female advantage disappears with increased age. Here, we report evidence that the female advantage is due to the protective role of estrogen. In an ALS mouse model carrying the human Cu/Zn superoxide dismutase (hSOD1) G93A transgene, ovariectomy did not alter the onset age of the disease while reducing the female lifespan by 7 days and making it comparable to that of the male transgenic mice.