Autophagy, which is a process of self eating, has gained interest in the past decade due to its both beneficial and controversial roles in various biological phenomena. The discovery of autophagy genes (ATG) in yeast has led to focused research designed to elucidate the mechanism and regulation of this process. The role of autophagy in a variety of biological phenomena, including human disease, is still the subject of debate. However, recent findings suggest that autophagy is a highly regulated process with both beneficial and negative effects.
Neural progenitor cells (NPs) have shown several promising benefits for the treatment of neurological disorders. To evaluate the therapeutic potential of human neural progenitor cells (hNPs) in amyotrophic lateral sclerosis (ALS), we transplanted hNPs or growth factor (GF)-expressing hNPs into the central nervous system (CNS) of mutant Cu/Zn superoxide dismutase (SOD1(G93A)) transgenic mice.
Percutaneous pulmonary valve implantation helps in prolonging the lifespan of surgically placed right ventricle-to-pulmonary artery (RV-PA) conduits, and represents a less invasive alternative to repeat open-heart surgery. The clinical indications for treatment match those of surgery. As far as the suitability is concerned, the current ideal substrate is a degenerated RV-PA conduit, because of the presence of a certain degree of calcification that offers a safe anchoring point.
The focus here is on research involving long-term calorie restriction (CR) to prevent or delay the incidence of the metabolic syndrome with age. The current societal environment is marked by overabundant accessibility of food coupled with a strong trend to reduced physical activity, both leading to the development of a constellation of disorders including central obesity, insulin resistance, dyslipidemia and hypertension (metabolic syndrome). Prolonged CR has been shown to extend median and maximal lifespan in a variety of lower species (yeast, worms, fish, rats, and mice).
Uncoupling proteins (UCPs) can dissipate mitochondrial protonmotive force by increasing the proton conductance of the inner membrane and through this effect could decrease ROS production, ameliorate oxidative stress and extend lifespan. We investigated whether ubiquitous, pan-neuronal or neurosecretory cell-specific expression of human UCP3 (hUCP3) in adult Drosophila melanogaster affected lifespan.
The nicotinamide adenine dinucleotide (NAD)-activated protein deacetylase Sir2p/Sirt1 has been strongly implicated in the modulation of replicative lifespan and promotion of longevity. Part of Sirt1's capacity for lifespan extension in complex organisms may be attributed to its protective activity against neuronal degeneration. Manipulation of Sirt1's activity or levels by pharmacological and genetic means in several models of neurodegenerative diseases demonstrated its neuroprotective credentials.
Major advances in aging research have been made by studying the effect of genetic modifications on the lifespan of organisms, such as yeast, invertebrates (worms and flies) and mice. Data from yeast and invertebrates have been the most plentiful because of the ease in which genetic manipulations can be made and the rapidity by which lifespan experiments can be performed. With the ultimate focus on advancing human health, testing genetic interventions in mammals is crucial, and the mouse has proven to be the mammal most amenable to this task.
It has been widely reported that CHO cells undergo apoptosis in culture, despite supplementation of nutrients through fed-batch strategies. Improvement of cell viability in culture can effectively improve recombinant protein yield through extension of the culture's production lifespan, especially at high cell densities. Heat shock proteins (HSPs) have been reported to demonstrate anti-apoptotic effects against a wide range of physical and chemical stimuli through their ability to bind and act as antagonists to critical apoptotic molecules.
Studies in a variety of model organisms indicate that nutrient signaling is tightly coupled to longevity. In nutrient replete conditions, organisms develop, grow, and age quickly. When nutrients become sparse as with dietary restriction, growth and development decline, stress response pathways become induced and organisms live longer. Considerable effort has been devoted to understanding the molecular events mediating lifespan extension by dietary restriction.
This annual review focuses on invertebrate model organisms, which shed light on new mechanisms in aging and provide excellent systems for both genome-wide and in-depth analysis. This year, protein interaction networks have been used in a new bioinformatic approach to identify novel genes that extend replicative lifespan in yeast. In an extended approach, using a new, human protein interaction network, information from the invertebrates was used to identify new, candidate genes for lifespan extension and their orthologues were validated in the nematode Caenorhabditis elegans.