The premise that oxidative stress, among several other factors, plays an important role in atherogenesis implies that the development and progression of atherosclerosis can be inhibited by antioxidants. In this minireview we discuss several mechanisms by which the antioxidants ascorbate (vitamin C) and alpha-tocopherol (vitamin E) may protect against atherosclerosis. These mechanisms include inhibition of LDL oxidation and inhibition of leukocyte adhesion to the endothelium and vascular endothelial dysfunction.
Atherosclerosis is the leading cause of morbidity and mortality in Westernized populations. The monocyte is a crucial cell in the genesis of the atherosclerotic lesion and is present during all stages of atherosclerosis. alpha-Tocopherol (AT) is the most active component of the vitamin E family and is the principal and most potent lipid-soluble antioxidant in plasma and LDL.
Preliminary clinical data indicate that omega-3 fatty acids may be effective mood stabilizers for patients with bipolar disorder. Both lithium and valproic acid are known to inhibit protein kinase C (PKC) activity after subchronic administration in cell culture and in vivo. The current study was undertaken to determine the effects of the omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on protein kinase C phosphotransferase activity in vitro.
Diabetes is a major risk factor for premature atherosclerosis, and oxidative stress appears to be an important mechanism. Previously, we showed that diabetic monocytes produce increased superoxide anion (O(2)(-)), and alpha-tocopherol (AT) supplementation decreases this. The aim of this study was to elucidate the mechanism(s) of O(2)(-) release and inhibition by AT under hyperglycemic (HG) conditions in monocytes.
Diabetes confers an increased propensity to atherosclerosis. Inflammation is pivotal in atherogenesis, and diabetes is a proinflammatory state. Interleukin (IL)-6, in addition to inducing the acute-phase response, contributes to insulin resistance. Monocytes from type 2 diabetic patients secrete increased IL-6. The aim of this study was to examine molecular mechanisms for increased IL-6 release from monocytes under hyperglycemia. Monocytic cells (THP-1) were cultured in the presence of 5.5 mmol/l (normal) or 15 mmol/l (high) glucose and mannitol.
The roles of MEK, ERK, the epsilon and alpha isoforms of protein kinase C (PKC), and caveolin-1 in regulating collagen expression were studied in normal lung fibroblasts. Knocking down caveolin-1 gave particularly striking results. A 70% decrease caused a 5-fold increase in MEK/ERK activation and collagen expression. The combined data reveal a branched signaling pathway. In its central portion MEK activates ERK, leading to increased collagen expression. Two branches converge on MEK/ERK. In one, increased PKCepsilon leads to MEK/ERK activation.
American Journal of Physiology. Endocrinology and Metabolism
Previously, IL-1beta secretion from Type 2 diabetic patients has been shown to be increased compared with controls. In this study, we aimed to delineate the mechanism of IL-1beta induction under high-glucose (HG) conditions in human monocytes. THP-1 cells cultured in normal glucose were treated with increasing concentrations of d-glucose (10-25 mM) for 6-72 h. IL-1beta and IL-1 receptor antagonist levels were measured by ELISA and Western blots, whereas mRNA was quantitated by RT-PCR.
OBJECTIVE: Hyperglycemia-induced inflammation is central in diabetes complications, and monocytes are important in orchestrating these effects. Toll-like receptors (TLRs) play a key role in innate immune responses and inflammation. However, there is a paucity of data examining the expression and activity of TLRs in hyperglycemic conditions. Thus, in the present study, we examined TLR2 and TLR4 mRNA and protein expression and mechanism of their induction in monocytic cells under high-glucose conditions.
Expression and activity of CC motif ligand 2 (CCL2) is down-regulated by curcumin, the active phytochemical ingredient of turmeric (Curcuma longa), a dietary supplement often self-prescribed to promote prostate health. CCL2 is a potent chemotactic factor of prostate cancer (PCa) with important roles in development of bone metastasis. The relationship between CCL2 and curcumin, however, has not been studied in PCa. Adhesion, invasion and motility of PC-3 cells were measured in response to exposure to curcumin (30 microM; 18 h), CCL2 (100 ng/ml; 18 h) or PMA (100 ng/ml; 18 h).
Ceramide is an important bioactive lipid, intimately involved in many cellular functions, including the regulation of cell death, and in cancer and chemotherapy. Ceramide is synthesized de novo from sphinganine and acyl CoA via a family of 6 ceramide synthase enzymes, each having a unique preference for different fatty acyl CoA substrates and a unique tissue distribution. However, little is known regarding the regulation of these important enzymes.