Motor Neurons

Publication Title: 
Nature Genetics

Reactive oxygen (RO) has been identified as an important effector in ageing and lifespan determination. The specific cell types, however, in which oxidative damage acts to limit lifespan of the whole organism have not been explicitly identified. The association between mutations in the gene encoding the oxygen radical metabolizing enzyme CuZn superoxide dismutase (SOD1) and loss of motorneurons in the brain and spinal cord that occurs in the life-shortening paralytic disease, Familial Amyotrophic Lateral Sclerosis (FALS; ref.

Author(s): 
Parkes, T. L.
Elia, A. J.
Dickinson, D.
Hilliker, A. J.
Phillips, J. P.
Boulianne, G. L.
Publication Title: 
Free Radical Biology & Medicine

Mutations in human CuZn superoxide dismutase (SOD) have been associated with familial amyotrophic lateral sclerosis (FALS). Although leading to many experimental advances, this finding has not yet led to a clear understanding of the biochemical mechanism by which mutations in SOD promote the degeneration of motorneurons that causes this incurable paralytic disease.

Author(s): 
Elia, A. J.
Parkes, T. L.
Kirby, K.
St George-Hyslop, P.
Boulianne, G. L.
Phillips, J. P.
Hilliker, A. J.
Publication Title: 
Aging Cell

Molecular advances of the past decade have led to the discovery of a myriad of 'aging genes' (methuselah, Indy, InR, Chico, superoxide dismutase) that extend Drosophila lifespan by up to 85%. Despite this life extension, these mutants are no longer lived than at least some recently wild-caught strains. Typically, long-lived mutants are identified in relatively short-lived genetic backgrounds, and their effects are rarely tested in genetic backgrounds other than the one in which they were isolated or derived.

Author(s): 
Spencer, Christine C.
Howell, Christine E.
Wright, Amber R.
Promislow, Daniel E. L.
Publication Title: 
Experimental & Molecular Medicine

Neural progenitor cells (NPs) have shown several promising benefits for the treatment of neurological disorders. To evaluate the therapeutic potential of human neural progenitor cells (hNPs) in amyotrophic lateral sclerosis (ALS), we transplanted hNPs or growth factor (GF)-expressing hNPs into the central nervous system (CNS) of mutant Cu/Zn superoxide dismutase (SOD1(G93A)) transgenic mice.

Author(s): 
Park, Sungju
Kim, Hyoung-Tae
Yun, Seokkwan
Kim, Il-Sun
Lee, Jiyoon
Lee, Il-Shin
Park, Kook In
Publication Title: 
CNS neuroscience & therapeutics

Amyotrophic lateral sclerosis (ALS) is a devastating and fatal neurodegenerative disease of adults which preferentially attacks the neuromotor system. Riluzole has been used as the only approved treatment for amyotrophic lateral sclerosis since 1995, but its mechanism(s) of action in slowing the progression of this disease remain obscure. Searching PubMed for "riluzole" found 705 articles published between January 1996 and June 2009.

Author(s): 
Bellingham, Mark C.
Publication Title: 
The Journal of Neuroscience: The Official Journal of the Society for Neuroscience

Spinal muscular atrophy (SMA), a recessive neurodegenerative disease, is characterized by the selective loss of spinal motor neurons. No available therapy exists for SMA, which represents one of the leading genetic causes of death in childhood. SMA is caused by a mutation of the survival-of-motor-neuron 1 (SMN1) gene, leading to a quantitative defect in the survival-motor-neuron (SMN) protein expression. All patients retain one or more copies of the SMN2 gene, which modulates the disease severity by producing a small amount of stable SMN protein.

Author(s): 
Branchu, Julien
Biondi, Olivier
Chali, Farah
Collin, Thibault
Leroy, Felix
Mamchaoui, Kamel
Makoukji, Joelle
Pariset, Claude
Lopes, Philippe
Massaad, Charbel
Chanoine, Christophe
Charbonnier, FrÈdÈric
Publication Title: 
Human Molecular Genetics

In amyotrophic lateral sclerosis (ALS), the progressive loss of motor neurons is accompanied by extensive muscle denervation, resulting in paralysis and ultimately death. Upregulation of amyloid beta (A4) precursor protein (APP) in muscle fibres coincides with symptom onset in both sporadic ALS patients and the SOD1(G93A) mouse model of familial ALS.

Author(s): 
Bryson, J. Barney
Hobbs, Carl
Parsons, Michael J.
Bosch, Karen D.
Pandraud, Amelie
Walsh, Frank S.
Doherty, Patrick
Greensmith, Linda
Publication Title: 
PloS One

Mutations in the fused in sarcoma/translated in liposarcoma gene (FUS/TLS, FUS) have been identified in sporadic and familial forms of amyotrophic lateral sclerosis (ALS). FUS is an RNA-binding protein that is normally localized in the nucleus, but is mislocalized to the cytoplasm in ALS, and comprises cytoplasmic inclusions in ALS-affected areas. However, it is still unknown whether the neurodegeneration that occurs in ALS is caused by the loss of FUS nuclear function, or by the gain of toxic function due to cytoplasmic FUS aggregation.

Author(s): 
Sasayama, Hiroshi
Shimamura, Mai
Tokuda, Takahiko
Azuma, Yumiko
Yoshida, Tomokatsu
Mizuno, Toshiki
Nakagawa, Masanori
Fujikake, Nobuhiro
Nagai, Yoshitaka
Yamaguchi, Masamitsu
Publication Title: 
Cell Death and Differentiation

Amyotrophic lateral sclerosis (ALS) is a fatal neurological condition with no cure. Mitochondrial dysfunction, Ca(2+) overloading and local hypoxic/ischemic environments have been implicated in the pathophysiology of ALS and are conditions that may initiate metabolic acidosis in the affected tissue. We tested the hypothesis that acidotoxicity and acid-sensing ion channels (ASICs) are involved in the pathophysiology of ALS. We found that motoneurons were selectively vulnerable to acidotoxicity in vitro, and that acidotoxicity was partially reduced in asic1a-deficient motoneuron cultures.

Author(s): 
Behan, A. T.
Breen, B.
Hogg, M.
Woods, I.
Coughlan, K.
Mitchem, M.
Prehn, J. H. M.
Publication Title: 
Journal of Neurogenetics

Mutation of the human gene superoxide dismutase (hSOD1) triggers the fatal neurodegenerative motorneuron disorder, familial amyotrophic lateral sclerosis (ALS or Lou Gehrig's disease). Broad expression of this gene in Drosophila has no effect on longevity or functional senescence. We show here that restricting expression of human SOD1 primarily to motorneurons of Drosophila has significant effects on optomotor efficiency during in-flight tracking of rapidly moving visual targets.

Author(s): 
Petrosyan, Agavni
GonÁalves, Oscar F.
Hsieh, I.-Hui
Phillips, John P.
Saberi, Kourosh

Pages

Subscribe to RSS - Motor Neurons