The thiazolidinedione (TZDs) class of drugs are very effective for the treatment of type 2 diabetes mellitus (T2DM). But due to the adverse effects of synthetic TZDs, their use is strictly regulated. The therapeutic actions of TZDs are mediated via modulation of peroxisome proliferator-activated receptor gamma (PPAR?). Naturally occurring PPAR? modulators are more desirable as they lack the serious adverse effects caused by TZDs. This has prompted the exploitation of medicinal plants used in traditional medicine, for their potential PPAR? activity.
Studies in mutant, gene knock-out and transgenic mice have demonstrated that growth hormone (GH) signalling has a major impact on ageing and longevity. Growth hormone-resistant and GH-deficient animals live much longer than their normal siblings, while transgenic mice overexpressing GH are short lived. Actions of GH in juvenile animals appear to be particularly important for life extension and responsible for various phenotypic characteristics of long-lived hypopituitary mutants.
Adipose tissue is an active metabolic organ secreting adipocytokines which are involved in the energy homeostasis and regulation of glucose and lipid metabolism. Aging is associated with fat redistribution, which is characterized by loss of peripheral subcutaneous fat and accumulation of visceral fat. Visceral adipose tissue is more involved in the developement of metabolic diseases than subcutaneous adipose tissue. Aging also alters the function, proliferation, size, and number of adipose cells which leads to alterations in the secretion, synthesis and function of the adipocytokines.
Many hormonal signals from peripheral tissues contribute to the regulation of energy homeostasis and food intake. These regulators including leptin, insulin, and ghrelin, modulate the orexigenic and anorexigenic neuropeptide expression in hypothalamic nuclei. The anti-aging effects of caloric restriction have been explained from an evolutional viewpoint of the adaptive response of the neuroendocrine and metabolic response systems to maximize survival during periods of food shortage.
The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences
Insulin-like growth factor (IGF)-1 signaling might partly mediate effects of caloric restriction (CR), an experimental intervention for increasing longevity in mammals. The present study evaluated effects of recombinant human (rh)IGF-1 infusion on adipokine levels in CR and transgenic (Tg) dwarf rats with the reduced growth hormone-IGF-1 axis, which shared similar body weight and food intake. At 9 months of age, each rat received a continuous infusion of rhIGF-1 for 14 days, and rats received an injection of glucose after overnight fasting.
American Journal of Physiology. Endocrinology and Metabolism
Adiponectin, a physiologically active polypeptide secreted by adipocytes, shows insulin-sensitizing, anti-inflammatory, and antiatherogenic properties in rodents and humans. To assess the effects of chronic hyperadiponectinemia on metabolic phenotypes, we established three lines of transgenic mice expressing human adiponectin in the liver.
Hormone and Metabolic Research = Hormon- Und Stoffwechselforschung = Hormones Et MÈtabolisme
Aging diminishes hormone secretion and target cell responsiveness, possibly due to loss of cell membrane fluidity or alteration of membrane phospholipids affecting signal transduction. We investigated whether a high omega-3 polyunsaturated fatty acid diet would improve endocrine function in 6 men and 6 women aged over 60 years. Subjects first ate an isocaloric control diet for 6 weeks, followed by an 8-week experimental diet, which included 720 g of fatty fish weekly plus 15 ml of sardine oil daily.
What aging process is delayed by calorie restriction (CR) and mutations that produce long-lived dwarf mice? From 1935 until 1996, CR was the only option for increasing the maximum lifespan of laboratory rodents. In 1996, the mutation producing the Ames dwarf mouse (Prop-1(-/-)) was reported to increase lifespan. Since 1996, other gene mutations that cause dwarfism or lower body weight have been reported to increase the lifespan of mice. The recent discovery of long-lived mutant dwarf mice provides an opportunity to investigate common features between CR and dwarf models.
BACKGROUND AND AIMS: Caloric restriction (CR) is the most robust and reproducible intervention for slowing aging, and maintaining health and vitality in animals. Previous studies found that CR is associated with changes in specific biomarkers in monkeys that were also associated with reduced risk of mortality in healthy men. In this study we examine the association between other potential biomarkers related to CR and extended lifespan in healthy humans.
Studies in mutant, gene knock-out and transgenic mice have demonstrated that growth hormone (GH) signalling has a major impact on ageing and longevity. Growth hormone-resistant and GH-deficient animals live much longer than their normal siblings, while transgenic mice overexpressing GH are short lived. Actions of GH in juvenile animals appear to be particularly important for life extension and responsible for various phenotypic characteristics of long-lived hypopituitary mutants.