Self-incompatibility in the genus Prunus is controlled by two genes at the S-locus, S-RNase and SFB. Both genes exhibit the high polymorphism and high sequence diversity characteristic of plant self-incompatibility systems. Deduced polypeptide sequences of three myrobalan and three domestic plum S-RNases showed over 97% identity with S-RNases from other Prunus species, including almond, sweet cherry, Japanese apricot and Japanese plum. The second intron, which is generally highly polymorphic between alleles was also remarkably well conserved within these S-allele pairs.
Root-knot nematode (RKN) Meloidogyne species are major polyphagous pests of most crops worldwide, and cultivars with durable resistance are urgently needed because of nematicide bans. The Ma gene from the Myrobalan plum (Prunus cerasifera) confers complete-spectrum, heat-stable, and high-level resistance to RKN, which is remarkable in comparison with the Mi-1 gene from tomato (Solanum lycopersicum), the sole RKN resistance gene cloned. We report here the positional cloning and the functional validation of the Ma locus present at the heterozygous state in the P.2175 accession.
Angiotensin-I-converting enzyme (ACE) plays an important role in blood pressure regulation. In this study, an ACE-hexapeptide inhibitor (Asp-Glu-Asn-Ser-Lys-Phe) designated as chebulin was produced from the fruit protein of Terminalia chebula Retz. by pepsin digestion, ultrafiltrated through a 3 KDa cut-off membrane, a reverse-phase high-performance liquid chromatography, and nano-liquid chromatography tandem mass spectrometry analysis. Chebulin was found to inhibit ACE in a noncompetitive manner, as supported by the structural model.
Normal human breast epithelial cells were transfected with expression vectors containing the p53 gene mutated at either codon 143, 175, 248 or 273, or by infection with a recombinant retroviral vector containing the p53 gene mutated at codons 143, 175, 248, or 273. The breast epithelial cells were monitored for extension of in vitro lifespan and immortalization. Expression of some, but not all, p53 mutants resulted in an extension of in vitro lifespan.
Strains of Caenorhabditis elegans mutant for clk-1 exhibit a 20-40% increase in mean lifespan. clk-1 encodes a mitochondrial protein thought to be either an enzyme or regulatory molecule acting within the ubiquinone biosynthesis pathway. Here CLK-1 is shown to be related to the ubiquinol oxidase, alternative oxidase, and belong to the functionally diverse di-iron-carboxylate protein family which includes bacterioferritin and methane mono-oxygenase.
P. anserina mutants with impairments in complex IV (COX) of the respiratory chain are characterized by an increase in lifespan. Examples are the nuclear grisea mutant with a moderate lifespan extension (60%) and the immortal extranuclear ex1 mutant. Here we report data demonstrating that in mutant ex1 the level of the alternative oxidase (PaAOX) is significantly higher than in mutant grisea. PaAOX levels appear to be reversely dependent on COX activity.
NaCT (sodium-coupled citrate transporter) is an Na(+)-coupled citrate transporter identified recently in mammals that mediates the cellular uptake of citrate. It is expressed predominantly in the liver. NaCT is structurally and functionally related to the product of the Indy (I'm not dead yet) gene in Drosophila, the dysfunction of which leads to lifespan extension. Here, we show that NaCT mediates the utilization of extracellular citrate for fat synthesis in human liver cells, and that the process is stimulated by lithium.
Ticks are obligate hematophagous ectoparasites with a life cycle characterized by a period of starvation; many ticks spend more than 95% of their life off the host. Autophagy, which is the process of bulk cytoplasmic degradation in eukaryotic cells, is induced by starvation and is essential for extension of the lifespan. Therefore, we hypothesized that autophagy also occurs in ticks; however, there has been no report on autophagy-related (ATG) genes in ticks.
Ethosuximide is a medication used to treat seizure disorders in humans, and we previously demonstrated that ethosuximide can delay age-related changes and extend the lifespan of the nematode Caenorhabditis elegans. The mechanism of action of ethosuximide in lifespan extension is unknown, and elucidating how ethosuximide functions is important for defining endogenous processes that influence lifespan and for exploring the potential of ethosuximide as a therapeutic for age-related diseases.
Vasculature is essential for the sustained growth of solid tumors and metastases. Tumor cells surviving vascular-disruptive therapeutic intervention (especially those present at the tumor rim) can contribute to tumor regrowth. The aim was to strengthen, by carrier-mediated delivery of a chemotherapeutic, the curative effects of a bifunctional anti-vascular oligopeptide capable of inducing vascular shutdown and tumor shrinkage. For the in vitro experiments and animal therapy, ACDCRGDCFC-GG-(D)(KLAKLAK)(2) peptide (900 microM in D-PBSA, i.e.