TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik
Prunus species express different ranges and levels of resistance to the root-knot nematodes (RKN) Meloidogyne spp. In Myrobalan plum ( Prunus cerasifera), the dominant Ma gene confers a high-level and wide-spectrum resistance to the predominant RKN, Meloidogyne arenaria, Meloidogyne incognita, Meloidogyne javanica and the isolate Meloidogyne sp. Florida which overcomes the resistance of the Amygdalus sources. In Japanese plum ( Prunus salicina), a similar wide-spectrum dominant resistance gene, termed R(jap), has been hypothesized from an intraspecific segregating cross.
TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik
The Ma gene for root-knot nematode (RKN)resistance from Myrobalan plum (Prunus cerasifera L.)confers a complete-spectrum and a heat-stable resistance to Meloidogvne spp., conversely to Mi-I from tomato,which has a more restricted spectrum and a reduced efficiency at high temperature. This gene was identified from a perennial self-incompatible near-wild rootstock species and lies in cosegregation with the SCAR marker SCAFLP2 on the Prunus linkage group 7 in a 2.3 cM interval between the SCAR SCAL19 and SSR pchgms6 markers.
Self-incompatibility in the genus Prunus is controlled by two genes at the S-locus, S-RNase and SFB. Both genes exhibit the high polymorphism and high sequence diversity characteristic of plant self-incompatibility systems. Deduced polypeptide sequences of three myrobalan and three domestic plum S-RNases showed over 97% identity with S-RNases from other Prunus species, including almond, sweet cherry, Japanese apricot and Japanese plum. The second intron, which is generally highly polymorphic between alleles was also remarkably well conserved within these S-allele pairs.
Cellular senescence is a state of irreversible cell cycle arrest in which normal cells at the end of their lifespan fail to enter into DNA synthesis upon serum or growth factor stimulation. We examined whether proteins required for G1/S cell cycle progression were irreversibly down-regulated in senescent human fibroblasts. Both the 44- and 42-kDa forms of the MAP-kinase protein were expressed at similar levels in young and senescent cells.
Normal human breast epithelial cells were transfected with expression vectors containing the p53 gene mutated at either codon 143, 175, 248 or 273, or by infection with a recombinant retroviral vector containing the p53 gene mutated at codons 143, 175, 248, or 273. The breast epithelial cells were monitored for extension of in vitro lifespan and immortalization. Expression of some, but not all, p53 mutants resulted in an extension of in vitro lifespan.
Many degenerative diseases that occur with aging, as well as premature aging syndromes, are characterized by presenting cells with critically short telomeres. Telomerase reintroduction is envisioned as a putative therapy for diseases characterized by telomere exhaustion. K5-mTert transgenic mice overexpress telomerase in a wide spectrum of tissues. These mice have a higher incidence of both induced and spontaneous tumors, resulting in increased mortality during the first year of life.
Human keratinocytes grown in co-culture with fibroblast feeder cells have an extended in vitro lifespan and delayed accumulation of the tumor suppressor protein p16(INK4a) when compared to the same cells grown on tissue culture plastic alone. Previous studies have indicated that human keratinocytes can be immortalized by telomerase activity alone when grown in co-culture with feeder cells, suggesting that loss of the p16(INK4a)/Rb pathway is not required for immortalization.
Dyskeratosis congenita (DC) is characterized by the triad of reticulate skin pigmentation, nail dystrophy and leukoplakia. Epidermal atrophy, hair growth defects, bone marrow failure and increased risk of cancer are also common in DC patients. DC is caused by mutations in genes encoding for telomerase complex factors. Although there is an association of epidermal abnormalities with DC, epidermal cells from DC donors have not been previously characterized.
Excess adipose tissue is associated with metabolic disease and reduced life span, whereas caloric restriction decreases these risks. Here we show that as mice age, there is downregulation of Dicer and miRNA processing in adipose tissue resulting in decreases of multiple miRNAs. A similar decline of Dicer with age is observed in C.†elegans. This is prevented in both species by caloric restriction. Decreased Dicer expression also occurs in preadipocytes from elderly humans and can be produced in cells by exposure to oxidative stress or UV radiation.
Insulin-induced PI3K/Akt activation is known to inhibit a family of Forkhead transcription factors (FOXO), which can lead to increased oxidative stress in several model organisms. One of major transcription factors activated by oxidative stress and responsible for the production of many proinflammatory cytokines is NF-kappaB. In the present study, We were carried out to determine the relationship between FOXO1 and NF-kappaB activation using HEK293T cells and aged kidney isolated from ad libitum fed (AL) and 40% calorie restriction (CR) rats.