INTRODUCTION: Interest in the application of yoga for health benefits in western medicine is growing rapidly, with a significant rise in publications. The purpose of this systematic review is to determine whether the inclusion of yoga therapy to the treatment of breast cancer can improve the patient's physical and psychosocial quality of life (QoL). METHODS: A search of peer reviewed journal articles published between January 2009 and July 2014 was conducted.
INTRODUCTION: Interest in the application of yoga for health benefits in western medicine is growing rapidly, with a significant rise in publications. The purpose of this systematic review is to determine whether the inclusion of yoga therapy to the treatment of breast cancer can improve the patient's physical and psychosocial quality of life (QoL). METHODS: A search of peer reviewed journal articles published between January 2009 and July 2014 was conducted.
South African Medical Journal = Suid-Afrikaanse Tydskrif Vir Geneeskunde
Of all the theories purporting to uncover the roots of childhood behaviour and its extension into adult behaviour, the most cogent relates to the physical and psychological bonds of attachment between infant and mother. It is helpful to divide the human lifespan into three periods, each of which has alternating phases of attachment and detachment.
SV40 T-antigen-expressing human cells generally have an extension of lifespan until a period called "crisis" begins. On rare occasions a clone of cells emerges from the population in crisis and gives rise to an immortalized cell line. The present study compares the frequency of immortalization of cells from two different human lineages, lung fibroblasts and mammary epithelial cells.
Normal human breast epithelial cells were transfected with expression vectors containing the p53 gene mutated at either codon 143, 175, 248 or 273, or by infection with a recombinant retroviral vector containing the p53 gene mutated at codons 143, 175, 248, or 273. The breast epithelial cells were monitored for extension of in vitro lifespan and immortalization. Expression of some, but not all, p53 mutants resulted in an extension of in vitro lifespan.
Inactivation of p16INK4 tumor suppressor gene function is frequently observed in breast cancer. We examined p16INK4 expression in human mammary epithelial cell (HMEC) cultures established from four normal donors. Normal HMECs divide a limited number of times before proliferation ceases in a state referred to as selection (or M0). The cell subpopulation that emerges spontaneously from selection undergoes a further limited period of proliferation before senescence.
The vast majority of breast cancers are carcinomas that arise from mammary epithelial cells (MECs). One of the key early events in tumorigenic transformation is the ability of cells to overcome replicative senescence. However, the precise genetic changes that are responsible for this event in MECs is largely unknown. Here, we report that Bmi-1, originally identified as a c-Myc cooperating oncoprotein, can bypass senescence, extend the replicative life span, and immortalize MECs. Furthermore, Bmi-1 was overexpressed in immortal MECs and several breast cancer cell lines.
Studies were conducted to directly test whether the introduction of telomerase protects cancer-prone human mammary epithelial cells from chromosomal instability and spontaneous immortalization. Using a model for Li Fraumeni Syndrome (LFS), infection of human telomerase resulted in maintenance of telomere lengths, extension of in vitro lifespan, and prevention of spontaneous immortalization.
Proceedings of the National Academy of Sciences of the United States of America
The canonical function of the human telomerase protein (hTERT) is to synthesize telomeric DNA, but it has other biological activities, including enhancing cell proliferation, decreasing apoptosis, regulating DNA damage responses, and increasing cellular proliferative lifespan. The mechanistic relationships among these activities are not understood. We previously demonstrated that ectopic hTERT expression in primary human mammary epithelial cells diminishes their requirement for exogenous mitogens, thus giving them a proliferative advantage in a mitogen-depleted environment.
The genetic regulation of the human epigenome is not fully appreciated. Here we describe the effects of genetic variants on the DNA methylome in human lung based on methylation-quantitative trait loci (meQTL) analyses. We report 34,304 cis- and 585 trans-meQTLs, a genetic-epigenetic interaction of surprising magnitude, including a regulatory hotspot. These findings are replicated in both breast and kidney tissues and show distinct patterns: cis-meQTLs mostly localize to CpG sites outside of genes, promoters and CpG islands (CGIs), while trans-meQTLs are over-represented in promoter CGIs.